Пример #1
0
 def checkPar(self, par, num, section_name='plot'):
     for jj in range(num):
         #        try:
         #          if self._data[par[jj]].min() == self._data[par[jj]].max():
         #            af.WarningNoWait("Parameter %s=%f is a cosntant number. No plot for it. "%(par[jj], self._data[par[jj]].min()))
         #            return False
         #        except KeyError:
         #          af.WarningNoWait("Parameter '%s' in [plot] section do not exist. No plot for it."%( par[jj] )  )
         #          return False
         if par[jj] not in self._data.columns:
             af.WarningNoWait(
                 "Parameter '%s' in [%s] section do not exist." %
                 (par[jj], section_name))
             return False
         if self._data.shape[0] == 0:
             af.WarningNoWait("Parameter '%s' in [%s] section is empty." %
                              (par[jj], section_name))
             return False
         if not numpy.issubdtype(self._data[par[jj]].dtype, numpy.number):
             af.WarningNoWait(
                 "Parameter %s in [%s] section is not float number." %
                 (par[jj], section_name))
             return False
     return True
Пример #2
0
    def getPlot(self, ScanMethod):
        try:
            import matplotlib
        except ImportError:
            af.ErrorStop("No matplotlib module. No plot will be generated.")
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt
        if len(self._Histogram) + len(self._Scatter) + len(self._Color) + len(
                self._Contour) == 0:
            return
        af.Info('Start to plot the result ... ')
        FigNames = []
        for ii in self._Histogram:
            histconf = {
                'bins': 50,
                'normed': False,
                'facecolor': 'green',
                'alpha': 0.7
            }
            af.Info('Generate histogram plot of parameter %s' % ii[0])
            if not self.checkPar(ii, 1): continue
            f = plt.figure(**figconf)
            subplot = f.add_subplot(111)
            subplot.hist(self._data[ii[0]], **histconf)
            subplot.set_xlabel(ii[0], **labelconf)
            subplot.set_ylabel('Count', **labelconf)
            subplot.tick_params(which='both', direction='out')
            plt.savefig(os.path.join(self._path, ii[1]))

        for ii in self._Scatter:
            scatterconf = {
                's': 50,
                'marker': 'o',
                'edgecolors': 'None',
                'alpha': 0.9
            }
            af.Info('Generate scatter plot of parameter %s and %s' %
                    (ii[0], ii[1]))
            if not self.checkPar(ii, 2): continue
            f = plt.figure(**figconf)
            subplot = f.add_subplot(111)
            subplot.scatter(self._data[ii[0]], self._data[ii[1]],
                            **scatterconf)
            subplot.set_xlabel(ii[0], **labelconf)
            subplot.set_ylabel(ii[1], **labelconf)
            subplot.tick_params(which='both', direction='out')
            plt.savefig(os.path.join(self._path, ii[2]))

            if ScanMethod == af._mcmc:
                f = plt.figure(**figconf)
                subplot = f.add_subplot(111)
                subplot.scatter(self._dataAllTry[ii[0]],
                                self._dataAllTry[ii[1]],
                                label='All',
                                **scatterconf)
                subplot.scatter(self._data[ii[0]],
                                self._data[ii[1]],
                                label='Surviving',
                                **scatterconf)
                plt.legend(**legendconf)
                subplot.set_xlabel(ii[0], **labelconf)
                subplot.set_ylabel(ii[1], **labelconf)
                subplot.tick_params(which='both', direction='out')
                plt.savefig(os.path.join(self._path, 'Compare_%s' % ii[2]))

        for ii in self._Color:
            colorconf = {'edgecolors': 'None', 'cmap': plt.get_cmap('winter')}
            af.Info(
                'Generate color plot of parameter %s and %s with color %s' %
                (ii[0], ii[1], ii[2]))
            if not self.checkPar(ii, 3): continue
            f = plt.figure(**figconf)
            subplot = f.add_subplot(111)
            weigh = 50
            if "probability" in self._data.columns:
                weigh = self._data["probability"] * 100 / self._data[
                    "probability"].max() + 20
            elif "mult" in self._data.columns:
                weigh = self._data["mult"] * 100 / self._data["mult"].max() + 20
            sc1 = subplot.scatter(self._data[ii[0]],
                                  self._data[ii[1]],
                                  c=self._data[ii[2]],
                                  s=weigh,
                                  **colorconf)
            cb1 = plt.colorbar(sc1)
            cb1.set_label(ii[2], **labelconf)
            subplot.set_xlabel(ii[0], **labelconf)
            subplot.set_ylabel(ii[1], **labelconf)
            subplot.tick_params(which='both', direction='out')
            plt.savefig(os.path.join(self._path, ii[3]))

        for ii in self._Contour:
            try:
                from scipy.interpolate import griddata
            except ImportError:
                af.WarningNoWait(
                    "No scipy module. Contour plot will not be generated.")
                break
            af.Info(
                'Generate contour plot of parameter %s and %s with contour %s'
                % (ii[0], ii[1], ii[2]))
            if not self.checkPar(ii, 3): continue
            f = plt.figure(**figconf)
            subplot = f.add_subplot(111)

            x = self._data[ii[0]]
            X = numpy.linspace(min(x), max(x), 100)
            y = self._data[ii[1]]
            Y = numpy.linspace(min(y), max(y), 100)
            # z = [ numpy.log10(abs(u)) for u in self._data[ii[2]] ]  # log10
            z = self._data[ii[2]]
            Z = griddata(x, y, z, X, Y, interp='linear')

            #C = subplot.contour(X,Y,Z, 3,linewidths=2)
            #plt.clabel(C, inline=True, fontsize=8)

            ## debug
            #Cpoint = self.get_contour_verts(C)
            #numpy.savetxt(os.path.join(self._path, "contour_1_1.dat"),Cpoint[0][0])

            C = subplot.contourf(X, Y, Z, 3, cmap=plt.cm.rainbow)

            cb1 = plt.colorbar(C)
            cb1.set_label(ii[2], **labelconf)

            subplot.set_xlabel(ii[0], **labelconf)
            subplot.set_ylabel(ii[1], **labelconf)
            subplot.tick_params(which='both', direction='out')
            plt.savefig(os.path.join(self._path, ii[3]))
Пример #3
0
def mcmcrun(LnLike, Prior, n_params, n_live_points, inpar, fixedpar, outpar,
            StepSize, AccepRate, FlagTuneR, InitVal, n_print, outputfolder):
    data_file = open(os.path.join(outputfolder, af.ResultFile), 'a')
    all_data_file = open(os.path.join(outputfolder, af.ResultFile_MCMC), 'a')
    file_path = os.path.join(outputfolder, "SavedFile")

    n_dims = len(inpar)

    # Initialise cube
    cube = [af.NaN] * n_params

    covar = []  # the sigma of gauss distribution, normalized to 1
    par = []  # test par, normalized to 1
    CurPar = []  # current par, normalized to 1
    for i, name in enumerate(inpar):
        covar.append(StepSize[name])
        cube[i] = InitVal[name]
        par.append(cube[i])
        CurPar.append(cube[i])
    n_init = 0
    while True:
        Prior(cube, n_dims, n_params)  # normalized to cube to real value
        lnlike = LnLike(cube, n_dims, n_params)
        AllOutMCMC = cube.copy()
        AllOutMCMC.append(1)
        #"True" for saving files of initial physical point
        saveCube(AllOutMCMC, all_data_file, file_path, '0', False)
        if lnlike > af.log_zero / 2.0: break
        if n_init == 0:
            af.WarningNoWait(
                'The initial point is unphysical, it will find the physical initial points randmly.'
            )
        n_init = n_init + 1
        if n_init > 100:
            af.ErrorStop(
                'Can not find physical initial points with 100 tries.')
        for i in range(n_dims):
            cube[i] = random()
            CurPar[i] = cube[i]

    CurObs = []
    CurChisq = -2.0 * lnlike
    for i in range(n_params):
        CurObs.append(cube[i])
    CurObs.append(0)  # mult
    printPoint(0, cube, n_dims, inpar, fixedpar, outpar, lnlike, 0)

    # Initialize the MCMC parameters
    MinChisq = CurChisq
    Chisq = CurChisq
    Nrun = 0
    Naccept = 0
    Nout = 0
    mult = 1
    kcovar = 0
    while Naccept < n_live_points:

        #Nrun += 1
        RangeFlag = True
        for j in range(n_dims):
            par[j] = gauss(CurPar[j],
                           exp(kcovar) * covar[j])  # normalized to 1
            #rd = random()
            #par[j] = CurPar[j] + covar[j] * (0.5-rd)*2
        if max(par) > 1 or min(par) < 0:
            RangeFlag = False
            Nout = Nout + 1
            if Nout % 100 == 0:
                af.WarningNoWait("Too many points out of range!")
        else:
            Nrun += 1
            Nout = 0
            for i in range(n_dims):
                cube[i] = par[i]
            Prior(cube, n_dims, n_params)
            lnlike = LnLike(cube, n_dims, n_params)
            AllOutMCMC = cube.copy()
            AllOutMCMC.append(1)
            saveCube(AllOutMCMC, all_data_file, file_path, '0', False)
            Chisq = -2.0 * lnlike

        Flag_accept = RangeFlag and (Chisq < CurChisq + 20)
        if Flag_accept:
            if CurChisq > Chisq:
                Flag_accept = True
            else:
                Flag_accept = random() < exp(CurChisq - Chisq)
        if Flag_accept:
            CurObs[-1] = mult
            #"Naccept+1" due to file of Chisq have covered file of CurChisq
            saveCube(CurObs, data_file, file_path, str(Naccept + 1), True)
            CurChisq = Chisq
            for i in range(n_params):
                CurObs[i] = cube[i]
            for i in range(n_dims):
                CurPar[i] = par[i]

            if Chisq < MinChisq: MinChisq = Chisq
            Naccept += 1
            mult = 1
        else:
            if RangeFlag:
                mult += 1

        AccRat = float(Naccept) / float(Nrun)

        if FlagTuneR and Nrun < 1000:
            kcovar = kcovar + 1.0 / (float(Nrun)**0.7) * (AccRat - AccepRate)
        else:
            kcovar = 1

        if Nrun % n_print == 0:
            if RangeFlag:
                printPoint(Nrun, cube, n_dims, inpar, fixedpar, outpar, lnlike,
                           Naccept)
                printPoint4MCMC(Chisq, CurChisq, MinChisq, AccRat, FlagTuneR,
                                kcovar)

    # save the last point
    CurObs[-1] = mult
    saveCube(CurObs, data_file, file_path, str(Naccept), True)
Пример #4
0
    def setInputPar(self, inputvar):
        inputvar = af.string2nestlist(inputvar)

        # inputvar is list of list of input parameters define in section [scan]
        af.Info('Input parameters   =  ')
        for ii in inputvar:
            lenii = len(ii)
            
            if self._ScanMethod == af._postprocess:
              self.InPar[ii[0]] = af.NaN
              self.AllPar[ii[0]] = af.NaN
              af.Info('  ID= %s, read from previous '%(ii[0]))
              continue
            
            if lenii < 3 :
              af.ErrorStop(self.InputCheck(ii[0], 3, "Value"))
            
            # Set fixed par
            if ii[1].upper() == "FIXED":
              if lenii > 3 :
                af.WarningNoWait(self.InputCheck(ii[0], 3, "Value"))
                af.WarningWait("The rest %i values will be ignore."%(lenii-3) )
              af.Info('  ID= %s\tPrior= %s\t =%f'%(ii[0],ii[1],ii[2]))
              self.FixedPar[ii[0]] = ii[2]
              self.AllPar[ii[0]] = ii[2]
              continue
            
            # Initialize other input par to NaN
            self.InputPar[ii[0]] = ii
            self.InPar[ii[0]] = af.NaN
            self.AllPar[ii[0]] = af.NaN
            if lenii < 4 :
              af.ErrorStop(self.InputCheck(ii[0], 4, "Minimum, Maximum"))
            
            if self._ScanMethod in [af._random, af._multinest]:
              if lenii > 4 :
                af.WarningNoWait(self.InputCheck(ii[0], 4, "Minimum, Maximum"))
                af.WarningWait("The rest %i values will be ignore."%(lenii-4) )
              af.Info('  ID= %s\tPrior= %s\tMin= %f\tMax= %f'%(ii[0],ii[1],ii[2],ii[3]))
              continue
                
            if self._ScanMethod == af._grid:
              if lenii == 4:
                self.GridBin[ii[0]]=20
                af.WarningNoWait(self.InputCheck(ii[0], 5, "Minimum, Maximum, Number of bins"))
                af.WarningWait("'Number of bins' will take default value, 20.")
              else:
                self.GridBin[ii[0]]=ii[4]
                if self.GridBin[ii[0]] < 0 or type(ii[4]) != int:
                  af.WarningNoWait(InputCheck(ii[0], 5, "Minimum, Maximum, Number of bins"))
                  af.ErrorStop("'Number of bins' is not a positive integer.")
                if lenii> 5:
                  af.WarningNoWait(self.InputCheck(ii[0], 5, "Minimum, Maximum, Number of bins"))
                  af.WarningWait("The rest %i values will be ignore."%(lenii-5) )
              af.Info('  ID= %s\tPrior= %s\tMin= %f\tMax= %f\tNbin=%i'%(ii[0],ii[1],ii[2],ii[3],self.GridBin[ii[0]]))
              continue
            
            if self._ScanMethod == af._mcmc:
              if lenii < 6:
                af.WarningNoWait(self.InputCheck(ii[0], 6, "Minimum, Maximum, Interval, Initial value"))
                self.MCMCiv[ii[0]] = 1./2.
                IniV = float(ii[3]+ii[2])/2.
                af.WarningWait("'Initial value' will take default value, (Max-Min)/2.")
                if lenii < 5:
                  self.MCMCss[ii[0]] = 1./30.
                  Step = float(ii[3]-ii[2])/30.
                  af.WarningWait("'Interval' will take default value, (Max-Min)/30.")
              else:
                # The scan range is normalized to 1
                self.MCMCss[ii[0]] = 1.0/float(ii[4])
                Step = float(ii[3]-ii[2])/float(ii[4])
                if ii[1].lower() == 'flat':
                  self.MCMCiv[ii[0]] = float(ii[5]-ii[2])/float(ii[3]-ii[2])
                elif ii[1].lower() == 'log':
                  self.MCMCiv[ii[0]] = (log10(ii[5])-log10(ii[2]))/(log10(ii[3]) - log10(ii[2]))
                IniV = ii[5]
                if lenii > 6:
                  af.WarningNoWait(self.InputCheck(ii[0], 6, "Minimum, Maximum, Interval, Initial value"))
                  af.WarningWait("The rest %i values will be ignore."%(lenii-6) )
              af.Info('  ID= %s\tPrior= %s\tMin= %f\tMax= %f\tStep=%f\tIniV=%f'%(ii[0],ii[1],ii[2],ii[3],Step,self.MCMCiv[ii[0]]))
              continue
Пример #5
0
def ReadIn(Configfile, ES, Programs, Constraint, Ploter):
    cf = configparser.ConfigParser()
    cf.read(Configfile)

    # Read the basic scan parameters
    if not ('scan' in cf.sections()):
        af.ErrorStop(notFind('[scan] section'))
    try:
        ES.setScanMethod(cf.get('scan', 'Scan method'))
    except configparser.NoOptionError:
        af.ErrorStop(notFind('Scan method'))
    try:
        ES.setFolderName(cf.get('scan', 'Result folder name'))
    except configparser.NoOptionError:
        af.ErrorStop(notFind('Result folder name'))

    # Read the plot information
    # This part is put here, because if ScanMethod = PLOT, the rest of sections can be ignore.
    plot_items = []
    try:
        plot_items = cf.options("plot")
    except configparser.NoSectionError:
        if ES.getScanMethod() == af._plot:
            af.ErrorStop(notFind('[plot] section'))
    if 'histogram' in plot_items:
        Ploter.setHistogram(cf.get('plot', 'Histogram'))
    if 'scatter' in plot_items:
        Ploter.setScatter(cf.get('plot', 'Scatter'))
    if 'color' in plot_items:
        Ploter.setColor(cf.get('plot', 'Color'))
    if 'contour' in plot_items:
        Ploter.setContour(cf.get('plot', 'Contour'))
    checkDuplicatedName(Ploter._FigNames, "Figure", False)
    if ES.getScanMethod() == af._plot: return []

    # Back to read the basic scan parameters
    try:
        ES.setPointNum(cf.getint('scan', 'Number of points'))
        if ES.getScanMethod() in af._no_random:
            af.WarningNoWait(
                '"Number of points" in configure file is not used.')
    except configparser.NoOptionError:
        if ES.getScanMethod() in af._no_random:
            pass
        else:
            af.WarningWait(notFind('Number of points') + takeDefault('2'))
    except ValueError:
        af.ErrorStop(notInteger("Number of points"))
    try:
        ES.setRandomSeed(cf.getint('scan', 'Random seed'))
    except configparser.NoOptionError:
        if ES.getScanMethod() not in af._no_random:
            af.Info("Use current system time as random seed.")
    except ValueError:
        af.ErrorStop(notInteger("Random seed"))

    try:
        ES.setPrintNum(cf.getint('scan', 'Interval of print'))
    except configparser.NoOptionError:
        af.Info(notFind('Interval of print') + takeDefault('1'))
        ES.setPrintNum('1')
    except ValueError:
        af.WarningNoWait(notInteger("Interval of print") + takeDefault('1'))
        ES.setPrintNum('1')

    try:
        ES.setInputPar(cf.get('scan', 'Input parameters'))
    except configparser.NoOptionError:
        af.ErrorStop(notFind('Input parameters'))
    checkDuplicatedName(list(ES.InPar.keys()), "Input parameter")

    try:
        ES.setAccepRate(cf.get('scan', 'Acceptance rate'))
    except configparser.NoOptionError:
        if ES.getScanMethod() == af._mcmc:
            af.Info(notFind('Acceptance rate') + takeDefault('0.25'))
        else:
            pass

    ## sort programs by ID
    ProgID = [x for x in cf.sections() if x.startswith('program')]
    if len(ProgID) == 0:
        af.ErrorStop(notFind('[program] section'))
    for ii in ProgID:
        if not str.isdigit(ii[7:]):
            af.ErrorStop('The section name of [%s] is wrong' % ii)
    ProgID = sorted(ProgID, key=lambda x: int(x[7:]))

    ## Read the programs sections
    outputVarNames = []
    for ii in ProgID:
        items = cf.options(ii)

        Programs[ii] = PROGRAM()
        if 'program name' in items:
            Programs[ii].setProgName(cf.get(ii, 'Program name'))
        else:
            Programs[ii].setProgName(ii)
        if 'execute command' in items:
            Programs[ii].setCommand(cf.get(ii, 'Execute command'))
        else:
            af.ErrorStop('No "Execute command" in "%s".' % ii)
        if 'command path' in items:
            Programs[ii].setComPath(cf.get(ii, 'Command path'))
        else:
            Programs[ii].setComPath('')
            af.WarningNoWait('Use current path as "Command path" for "%s".' %
                             ii)

        if 'input file' in items and 'input variable' in items:
            Programs[ii].setInputFile(cf.get(ii, 'Input file'))
            Programs[ii].setInputVar(cf.get(ii, 'Input variable'))
        if 'output file' in items and 'output variable' in items:
            Programs[ii].setOutputFile(cf.get(ii, 'Output file'))
            Programs[ii].setOutputVar(cf.get(ii, 'Output variable'))

        for key, item in Programs[ii]._OutputVar.items():
            for subitem in item:
                outputVarNames.append(subitem[0])
        checkDuplicatedName(outputVarNames, "Output variable")

        # Additional optional commands
        try:
            Programs[ii].setExecutor(cf.get(ii, 'Command executor'))
        except:
            af.Info('Use "os.system" execute commands.')
        try:
            Programs[ii].setOutputClean(cf.get(ii, 'Clean output file'))
        except:
            af.Info('Delete output file(s) of %s before execute it. ' % ii)
        try:
            Programs[ii].setBound(cf.get(ii, 'Bound'))
        except:
            af.Info('No Bound.')

        if Programs[ii]._executor:  # 'os.system'
            try:
                Programs[ii].setTimeLimit(
                    cf.getfloat(ii, 'Time limit in minute'))
                af.WarningNoWait('Time limit of %s is not used.' % ii)
            except:
                pass
        else:  # 'subprocess.popen'
            try:
                Programs[ii].setTimeLimit(
                    cf.getfloat(ii, 'Time limit in minute'))
            except:
                af.Info('No time limit setting. Using defaut value 60 min.')

    ## Read the constraints
    constraint_items = []
    try:
        constraint_items = cf.options("constraint")
        if len(constraint_items) == 0 and (ES.getScanMethod()
                                           not in af._no_like):
            af.ErrorStop(
                'Section [constraint] is empty in the configure file.')
    except configparser.NoSectionError:
        if ES.getScanMethod() in af._no_like:
            pass
        else:
            af.ErrorStop(notFind('[constraint] section'))

    af.Info('...............................................')
    af.Debug('Constraint items:', constraint_items)
    if 'gaussian' in constraint_items:
        Constraint.setGaussian(cf.get('constraint', 'Gaussian'))
        # In order to add "math .." in "Gaussian" to self.AllPar TODO
        if Programs:
            Programs[ProgID[0]].setGaussian(cf.get('constraint', 'Gaussian'))
    if 'freeformchi2' in constraint_items:
        Constraint.setFreeFormChi2(cf.get('constraint', 'FreeFormChi2'))
        if Programs:
            Programs[ProgID[0]].setFreeFormChi2(
                cf.get('constraint', 'FreeFormChi2'))
    if ('gaussian' not in constraint_items) and (
            'freeformchi2' not in constraint_items) and (ES.getScanMethod()
                                                         not in af._no_like):
        af.ErrorStop('No valid iterm in [constraint] section.')

    ES.setProgram(Programs)

    return ProgID