Пример #1
0
def main():
    usage = '''
Usage:
------------------------------------------------

parallelized cross-validation. Prints 
misclassification rate and standard deviation

python %s [OPTIONS]  infile trainshapefile

Options:
  
   -h         this help
   -a  <int>  algorithm  1=MaxLike(def
   fault)
                         2=Gausskernel
                         3=NNet(backprop)
                         4=NNet(congrad)
                         5=NNet(Kalman)
                          6=Dnn(tensorflow)
                         7=SVM 
  -p  <list>  band positions (default all) 
                            e.g. -p [1,2,3]
  -L  <list>  hidden neurons (default [10])
                            e.g. [10,10]
  -e  <int>   epochs (default 100)

-------------------------------------------------''' % sys.argv[0]
    options, args = getopt.getopt(sys.argv[1:], 'hp:a:e:L:')
    pos = None
    L = [10]
    trainalg = 1
    epochs = 100
    for option, value in options:
        if option == '-h':
            print usage
            return
        elif option == '-p':
            pos = eval(value)
        elif option == '-e':
            epochs = eval(value)
        elif option == '-a':
            trainalg = eval(value)
        elif option == '-L':
            L = eval(value)
    if len(args) != 2:
        print 'Incorrect number of arguments'
        print usage
        sys.exit(1)
    infile = args[0]
    trnfile = args[1]
    gdal.AllRegister()
    inDataset = gdal.Open(infile, GA_ReadOnly)
    bands = inDataset.RasterCount
    if pos is None:
        pos = range(1, bands + 1)
    N = len(pos)
    if trainalg == 1:
        algorithm = 'MaxLike'
    elif trainalg == 2:
        algorithm = 'Gausskernel'
    elif trainalg == 3:
        algorithm = 'NNet(Backprop)'
    elif trainalg == 4:
        algorithm = 'NNet(Congrad)'
    elif trainalg == 5:
        algorithm = 'NNet(Kalman)'
    elif trainalg == 6:
        algorithm = 'Dnn(Tensorflow)'
    else:
        algorithm = 'SVM'
    print 'Algorithm: %s' % algorithm
    #  get the training data
    Gs, ls, K, _ = rs.readshp(trnfile, inDataset, pos)
    m = ls.shape[0]
    print str(m) + ' training pixel vectors were read in'

    #  stretch the pixel vectors to [-1,1] (for ffn)
    maxx = np.max(Gs, 0)
    minx = np.min(Gs, 0)
    for j in range(N):
        Gs[:,j]=2*(Gs[:,j]-minx[j])/(maxx[j]-minx[j]) \
                                              - 1.0


#  random permutation of training data
    idx = np.random.permutation(m)
    Gs = Gs[idx, :]
    ls = ls[idx, :]

    #  cross-validation
    start = time.time()
    traintest = []
    for i in range(10):
        sl = slice(i * m // 10, (i + 1) * m // 10)
        traintest.append(
            (np.delete(Gs,sl,0),np.delete(ls,sl,0), \
            Gs[sl,:],ls[sl,:],L,epochs,trainalg) )
    try:
        print 'attempting parallel calculation ...'
        c = Client()
        print 'available engines %s' % str(c.ids)
        v = c[:]
        result = v.map_sync(crossvalidate, traintest)
    except Exception as e:
        print '%s \nfailed, running sequentially ...' % e
        result = map(crossvalidate, traintest)
    print 'execution time: %s' % str(time.time() - start)
    print 'misclassification rate: %f' % np.mean(result)
    print 'standard deviation:     %f' % np.std(result)
Пример #2
0
def main():    
    usage = '''
Usage: 
--------------------------------------

Supervised classification of multispectral images

python %s [OPTIONS] filename shapefile 

Options:
  -h            this help
  -p  <list>    RGB band positions to be included
                (default all) e.g. -p [1,2,3]
  -a  <int>     algorithm  1=MaxLike
                           2=Gausskernel
                           3=NNet(backprop)
                           4=NNet(congrad)
                           5=NNet(Kalman)
                           6=Dnn(tensorflow)
                           7=SVM
  -e  <int>     number of epochs (default 100)
  -t  <float>   fraction for training (default 0.67)
  -v            use validation (reserve half of training
                   data for validation)  
  -P            generate class probability image (not
                         available for MaxLike)
  -n            suppress graphical output
  -L  <list>    list of hidden neurons in each 
                   hidden layer (default [10]) 
                            
If the input file is named 

         path/filenbasename.ext then

The output classification file is named 

         path/filebasename_class.ext

the class probabilities output file is named

         path/filebasename_classprobs.ext
         
and the test results file is named

         path/filebasename_<classifier>.tst                            
  
  -------------------------------------'''%sys.argv[0]


    outbuffer = 100

    options, args = getopt.getopt(sys.argv[1:],'hnvPp:t:e:a:L:')
    pos = None
    probs = False   
    L = [10]
    trainalg = 1
    epochs = 100
    graphics = True
    validation = False
    trainfrac = 0.67
    for option, value in options:
        if option == '-h':
            print usage
            return
        elif option == '-p':
            pos = eval(value)
        elif option == '-n':
            graphics = False 
        elif option == '-v':
            validation = True   
        elif option == '-t':
            trainfrac = eval(value)  
        elif option == '-e':
            epochs = eval(value)                          
        elif option == '-a':
            trainalg = eval(value)
        elif option == '-L':
            L = eval(value)    
        elif option == '-P':
            probs = True                              
    if len(args) != 2: 
        print 'Incorrect number of arguments'
        print usage
        sys.exit(1)      
    if trainalg == 1:
        algorithm = 'MaxLike'
    elif trainalg == 2:
        algorithm = 'Gausskernel'    
    elif trainalg == 3:
        algorithm = 'NNet(Backprop)'
    elif trainalg == 4:
        algorithm =  'NNet(Congrad)'
    elif trainalg == 5:
        algorithm =  'NNet(Kalman)'    
    elif trainalg == 6:
        algorithm =  'Dnn(tensorflow)'    
    else:
        algorithm = 'SVM'    
    print 'Training with %s'%algorithm          
    infile = args[0]  
    trnfile = args[1]      
    gdal.AllRegister() 
    if infile:                   
        inDataset = gdal.Open(infile,GA_ReadOnly)
        cols = inDataset.RasterXSize
        rows = inDataset.RasterYSize    
        bands = inDataset.RasterCount
        geotransform = inDataset.GetGeoTransform()
    else:
        return  
    if pos is None: 
        pos = range(1,bands+1)
    N = len(pos)    
    rasterBands = [] 
    for b in pos:
        rasterBands.append(inDataset.GetRasterBand(b))     
#  output files
    path = os.path.dirname(infile)
    basename = os.path.basename(infile)
    root, ext = os.path.splitext(basename)
    outfile = '%s/%s_class%s'%(path,root,ext)  
    tstfile = '%s/%s_%s.tst'%(path,root,algorithm)            
    if (trainalg in (2,3,4,5,6)) and probs:
#      class probabilities file
        probfile = '%s/%s_classprobs%s'%(path,root,ext) 
    else:
        probfile = None        
        
#  get the training data        
    Xs,Ls,K,classnames = rs.readshp(trnfile,inDataset,pos) 
    m = Ls.shape[0]  
#  stretch the pixel vectors to [-1,1] for ffn, dnn
    maxx = np.max(Xs,0)
    minx = np.min(Xs,0)
    for j in range(len(pos)):
        Xs[:,j] = 2*(Xs[:,j]-minx[j])/(maxx[j]-minx[j]) - 1.0 
#  random permutation of training data
    idx = np.random.permutation(m)
    Xs = Xs[idx,:] 
    Ls = Ls[idx,:]     
#  train on trainfrac of training examples, rest for testing          
    Xstrn = Xs[:int(trainfrac*m),:]
    Lstrn = Ls[:int(trainfrac*m),:] 
    Xstst = Xs[int(trainfrac*m):,:]  
    Lstst = Ls[int(trainfrac*m):,:]  
        
#  setup output datasets 
    driver = inDataset.GetDriver() 
    outDataset = driver.Create(outfile,cols,rows,1,GDT_Byte) 
    projection = inDataset.GetProjection()
    if geotransform is not None:
        outDataset.SetGeoTransform(geotransform)
    if projection is not None:
        outDataset.SetProjection(projection) 
    outBand = outDataset.GetRasterBand(1) 
    if probfile:   
        probDataset = driver.Create(probfile,cols,rows,K,GDT_Byte) 
        if geotransform is not None:
            probDataset.SetGeoTransform(geotransform)
        if projection is not None:
            probDataset.SetProjection(projection)  
        probBands = [] 
        for k in range(K):
            probBands.append(probDataset.GetRasterBand(k+1))         
#  initialize classifier  
    if   trainalg == 1:
        classifier = sc.Maxlike(Xstrn,Lstrn)
    elif trainalg == 2:
        classifier = sc.Gausskernel(Xstrn,Lstrn)
    elif trainalg == 3:
        classifier = sc.Ffnbp(Xstrn,Lstrn,L,epochs,validation)
    elif trainalg == 4:
        classifier = sc.Ffncg(Xstrn,Lstrn,L,epochs,validation)
    elif trainalg == 5:
        classifier = sc.Ffnekf(Xstrn,Lstrn,L,epochs,validation)    
    elif trainalg == 6:
#        classifier = sc.Dnn_learn(Xstrn,Lstrn,L,epochs) 
#        classifier = sc.Dnn_core(Xstrn,Lstrn,L,epochs)
        classifier = sc.Dnn_keras(Xstrn,Lstrn,L,epochs)
    elif trainalg == 7:
        classifier = sc.Svm(Xstrn,Lstrn)         
#  train it            
    print 'training on %i pixel vectors...' % np.max(classifier._Gs.shape)
    print 'classes: %s'%str(classnames)
    start = time.time()
    result = classifier.train()
    print 'elapsed time %s' %str(time.time()-start) 
    if result is not None:
        if (trainalg in [3,4,5]) and graphics:
#          the cost arrays are returned in result         
            cost = np.log(result[0]) 
            costv = np.log(result[1])
            ymax = np.max(cost)
            #ymin = np.min(cost)-1
            ymin = 5.0
            xmax = len(cost)      
            plt.plot(range(xmax),costv,'r',range(xmax),cost,'b')
            plt.axis([0,xmax,ymin,ymax])
            plt.title('Log(Cross entropy)')
            plt.xlabel('Epoch')              
#      classify the image           
        print 'classifying...'
        start = time.time()
        tile = np.zeros((outbuffer*cols,N),dtype=np.float32)    
        for row in range(rows/outbuffer):
            print 'row: %i'%(row*outbuffer)
            for j in range(N):
                tile[:,j] = rasterBands[j].ReadAsArray(0,row*outbuffer,cols,outbuffer).ravel()
                tile[:,j] = 2*(tile[:,j]-minx[j])/(maxx[j]-minx[j]) - 1.0               
            cls, Ms = classifier.classify(tile)  
            outBand.WriteArray(np.reshape(cls,(outbuffer,cols)),0,row*outbuffer)
            if probfile and Ms is not None:
                Ms = np.byte(Ms*255)
                for k in range(K):
                    probBands[k].WriteArray(np.reshape(Ms[:,k],(outbuffer,cols)),0,row*outbuffer)
        outBand.FlushCache()
        print 'elapsed time %s' %str(time.time()-start)
        outDataset = None
        inDataset = None      
        if probfile:
            for probBand in probBands:
                probBand.FlushCache() 
            probDataset = None
            print 'class probabilities written to: %s'%probfile                       
        print 'thematic map written to: %s'%outfile
        if (trainalg in [3,4,5]) and graphics:
            plt.show()
        if tstfile:
            with open(tstfile,'w') as f:               
                print >>f, algorithm +'test results for %s'%infile
                print >>f, time.asctime()
                print >>f, 'Classification image: %s'%outfile
                print >>f, 'Class probabilities image: %s'%probfile
                print >>f, Lstst.shape[0],Lstst.shape[1]
                classes, _ = classifier.classify(Xstst)
                labels = np.argmax(Lstst,axis=1)+1
                for i in range(len(classes)):
                    print >>f, classes[i], labels[i]              
                f.close()
                print 'test results written to: %s'%tstfile
        print 'done'
    else:
        print 'an error occured' 
        return 
Пример #3
0
def main():    
    usage = '''
Usage: 
---------------------------------------------------------
python %s  [-a algorithm] [-p bands] [-L hidden neurons] [-e epochs] infile trainShapefile

bandPositions is a list, e.g., -p [1,2,4]  

algorithm  1=MaxLike
           2=Gausskernel
           3=NNet(backprop)
           4=NNet(congrad)
           5=NNet(Kalman)
           6=Dnn(tensorflow)
           7=SVM

prints misclassification rate and standard deviation
--------------------------------------------------------''' %sys.argv[0]
    options, args = getopt.getopt(sys.argv[1:],'hp:a:e:L:')
    pos = None
    L = [10]
    trainalg = 1
    epochs = 100
    for option, value in options:
        if option == '-h':
            print usage
            return
        elif option == '-p':
            pos = eval(value) 
        elif option == '-e':
            epochs = eval(value)          
        elif option == '-a':
            trainalg = eval(value)
        elif option == '-L':
            L = eval(value)                                 
    if len(args) != 2: 
        print 'Incorrect number of arguments'
        print usage
        sys.exit(1)      
    infile = args[0]  
    trnfile = args[1]      
    gdal.AllRegister()                
    inDataset = gdal.Open(infile,GA_ReadOnly)  
    bands = inDataset.RasterCount
    if pos is None: 
        pos = range(1,bands+1)
    N = len(pos)    
    if trainalg == 1:
        algorithm = 'MaxLike'
    elif trainalg == 2:
        algorithm = 'Gausskernel'    
    elif trainalg == 3:
        algorithm = 'NNet(Backprop)'
    elif trainalg == 4:
        algorithm =  'NNet(Congrad)'
    elif trainalg == 5:
        algorithm =  'NNet(Kalman)'    
    elif trainalg == 6:
        algorithm =  'Dnn(Tensorflow)'    
    else:
        algorithm = 'SVM' 
    print 'Algorithm: %s'%algorithm               
#  get the training data        
    Gs,ls,K,classnames = rs.readshp(trnfile,inDataset,pos) 
    m = ls.shape[0]      
    print str(m) + ' training pixel vectors were read in' 
    
#  stretch the pixel vectors to [-1,1] (for ffn)
    maxx = np.max(Gs,0)
    minx = np.min(Gs,0)
    for j in range(N):
        Gs[:,j] = 2*(Gs[:,j]-minx[j])/(maxx[j]-minx[j]) - 1.0   
#  random permutation of training data
    idx = np.random.permutation(m)
    Gs = Gs[idx,:] 
    ls = ls[idx,:]             

#  cross-validation
    start = time.time()
    rc = ipyparallel.Client()    
    print 'running %i IPython engines'%len(rc)  
    traintest = []
    for i in range(10):
        sl = slice(i*m//10,(i+1)*m//10)
        traintest.append( 
            (np.delete(Gs,sl,0),np.delete(ls,sl,0), \
            Gs[sl,:],ls[sl,:],L,epochs,trainalg) )
    v = rc[:]   
    v.execute('import auxil.supervisedclass as sc')
    result = v.map(crossvalidate,traintest).get()   
    print 'execution time: %s' %str(time.time()-start)      
    print 'misclassification rate: %f' %np.mean(result)
    print 'standard deviation:     %f' %np.std(result)  
Пример #4
0
def main():
    usage = '''
Usage:
------------------------------------------------

supervised classification of multispectral images with ADABOOST.M1

python %s [OPTIONS] filename trainShapefile
    
Options:

   -h         this help
   -p <list>  band positions e.g. -p [1,2,3,4] 
   -L <int>  number of hidden neurons (default 10)
   -n <int>   number of nnet instances (default 50)
   -e <int>   epochs for ekf training (default 3)
   
If the input file is named 

         path/filenbasename.ext then

The output classification file is named 

         path/filebasename_class.ext

------------------------------------------------''' % sys.argv[0]

    outbuffer = 100

    options, args = getopt.getopt(sys.argv[1:], 'hp:n:e:L:')
    pos = None
    L = [10]
    epochs = 3
    instances = 50
    for option, value in options:
        if option == '-h':
            print usage
            return
        elif option == '-p':
            pos = eval(value)
        elif option == '-e':
            epochs = eval(value)
        elif option == '-n':
            instances = eval(value)
        elif option == '-L':
            L = [eval(value)]
    if len(args) != 2:
        print 'Incorrect number of arguments'
        print usage
        sys.exit(1)
    print 'Training with ADABOOST.M1 and %i epochs per ffn' % epochs
    infile = args[0]
    trnfile = args[1]
    gdal.AllRegister()
    if infile:
        inDataset = gdal.Open(infile, GA_ReadOnly)
        cols = inDataset.RasterXSize
        rows = inDataset.RasterYSize
        bands = inDataset.RasterCount
        geotransform = inDataset.GetGeoTransform()
    else:
        return
    if pos is None:
        pos = range(1, bands + 1)
    N = len(pos)
    rasterBands = []
    for b in pos:
        rasterBands.append(inDataset.GetRasterBand(b))
#  output file
    path = os.path.dirname(infile)
    basename = os.path.basename(infile)
    root, ext = os.path.splitext(basename)
    outfile = '%s/%s_class%s' % (path, root, ext)
    #  setup output class image dataset
    driver = inDataset.GetDriver()
    outDataset = driver.Create(outfile, cols, rows, 1, GDT_Byte)
    projection = inDataset.GetProjection()
    if geotransform is not None:
        outDataset.SetGeoTransform(geotransform)
    if projection is not None:
        outDataset.SetProjection(projection)
    outBand = outDataset.GetRasterBand(1)
    #  get the training data
    Xs, Ls, K, _ = rs.readshp(trnfile, inDataset, pos)
    m = Ls.shape[0]
    #  stretch the pixel vectors to [-1,1]
    maxx = np.max(Xs, 0)
    minx = np.min(Xs, 0)
    for j in range(len(pos)):
        Xs[:, j] = 2 * (Xs[:, j] - minx[j]) / (maxx[j] - minx[j]) - 1.0


#  random permutation of training data
    idx = np.random.permutation(m)
    Xs = Xs[idx, :]
    Ls = Ls[idx, :]
    #  train on 2/3 of training examples, rest for testing
    mtrn = int(0.67 * m)
    mtst = m - mtrn
    Xstrn = Xs[:mtrn, :]
    Lstrn = Ls[:mtrn, :]
    Xstst = Xs[mtrn:, :]
    Lstst = Ls[mtrn:, :]
    labels_train = np.argmax(Lstrn, 1)
    labels_test = np.argmax(Lstst, 1)
    #  list of network instances, weights and errors
    ffns = []
    alphas = []
    errtrn = []
    errtst = []
    #  initial probability distribution
    p = np.ones(mtrn) / mtrn
    #  loop through the network instance
    start = time.time()
    instance = 1
    while instance < instances:
        trial = 1
        while trial < 6:
            print 'running instance: %i  trial: %i' \
                                  %(instance,trial)
            #          instantiate a ffn and train it
            ffn = Ffnekfab(Xstrn, Lstrn, p, L, epochs)
            ffn.train()
            #          determine beta
            labels, _ = ffn.classify(Xstrn)
            labels -= 1
            idxi = np.where(labels != labels_train)[0]
            idxc = np.where(labels == labels_train)[0]
            epsilon = np.sum(p[idxi])
            beta = epsilon / (1 - epsilon)
            if beta < 1.0:
                #              continue
                ffns.append(ffn)
                alphas.append(np.log(1.0 / beta))
                #              update distribution
                p[idxc] = p[idxc] * beta
                p = p / np.sum(p)
                #              train error
                labels, _ = seq_class(ffns, Xstrn, alphas, K)
                tmp = np.where(labels != labels_train, 1, 0)
                errtrn.append(np.sum(tmp) / float(mtrn))
                #              test error
                labels, _ = seq_class(ffns, Xstst, alphas, K)
                tmp = np.where(labels != labels_test, 1, 0)
                errtst.append(np.sum(tmp) / float(mtst))
                print 'train error: %f test error: %f'\
                     %(errtrn[-1],errtst[-1])
                #              this instance is done
                trial = 6
                instance += 1
            else:
                trial += 1
                #              break off training
                if trial == 6:
                    instance = instances
    print 'elapsed time %s' % str(time.time() - start)
    #  plot errors
    n = len(errtrn)
    errtrn = np.array(errtrn)
    errtst = np.array(errtst)
    x = np.arange(1, n + 1, 1)
    ax = plt.subplot(111)
    ax.semilogx(x, errtrn, label='train')
    ax.semilogx(x, errtst, label='test')
    ax.legend()
    ax.set_xlabel('number of networks')
    ax.set_ylabel('classification error')
    plt.savefig('/home/mort/LaTeX/new projects/CRC4/Chapter7/fig7_3.eps',
                bbox_inches='tight')
    plt.show()
    #  classify the image
    print 'classifying...'
    start = time.time()
    tile = np.zeros((outbuffer * cols, N), dtype=np.float32)
    for row in range(rows / outbuffer):
        print 'row: %i' % (row * outbuffer)
        for j in range(N):
            tile[:, j] = rasterBands[j].ReadAsArray(0, row * outbuffer, cols,
                                                    outbuffer).ravel()
            tile[:, j] = 2 * (tile[:, j] - minx[j]) / (maxx[j] - minx[j]) - 1.0
        cls, _ = seq_class(ffns, tile, alphas, K)
        outBand.WriteArray(np.reshape(cls, (outbuffer, cols)), 0,
                           row * outbuffer)
    outBand.FlushCache()
    print 'thematic map written to: %s' % outfile
    print 'elapsed time %s' % str(time.time() - start)