Пример #1
0
def main():
    prs = []
    rocs = []
    times = []
    with Parallel(n_jobs=4, verbose=11, backend='multiprocessing') as parallel_pool:
        for index in range(ITERATIONS):
            print('ITERATION #%s' % str(index+1))
            start_time = time.time()
            pr, roc = hplsfacev(args, parallel_pool)
            end_time = time.time()
            
            abs_time = (end_time - start_time) / FOLD
            prs.append(pr)
            rocs.append(roc)
            times.append(abs_time)
            prs_f, rocs_f = iteration_to_fold(prs, rocs)
            with open('./files/' + OUTPUT_NAME + '.file', 'w') as outfile:
                pickle.dump([prs_f, rocs_f], outfile)
            for index in range(len(prs_f)):
                plot_precision_recall(prs_f[index], OUTPUT_NAME + '_fold_' + str(index + 1))
            for index in range(len(rocs_f)):
                plot_roc_curve(rocs_f[index], OUTPUT_NAME + '_fold_' + str(index + 1))
            with open('./times/' + OUTPUT_NAME + '.time', 'a') as outtime:
                outtime.write(str(abs_time) + '\n')
        with open('./times/' + OUTPUT_NAME + '.time', 'a') as outtime:
            outtime.write('------\n')
            outtime.write(str(np.mean(times)) + '\n')
            outtime.write(str(np.std(times)) + '\n')
def main():
    os_cmcs = []
    oaa_cmcs = []
    dets = []
    prs = []
    rocs = []
    fscores = []
    with Parallel(n_jobs=-2, verbose=11,
                  backend='multiprocessing') as parallel_pool:
        for index in range(ITERATIONS):
            print('ITERATION #%s' % str(index + 1))
            os_cmc, oaa_cmc, det, pr, roc, fscore = plshface(
                args, parallel_pool)
            os_cmcs.append(os_cmc)
            oaa_cmcs.append(oaa_cmc)
            dets.append(det)
            prs.append(pr)
            rocs.append(roc)
            fscores.append(fscore)

            with open('./files/' + OUTPUT_NAME + '.file', 'w') as outfile:
                pickle.dump([prs, rocs], outfile)

            plot_cmc_curve(os_cmcs, oaa_cmcs, OUTPUT_NAME)
            plot_det_curve(dets, OUTPUT_NAME)
            plot_precision_recall(prs, OUTPUT_NAME)
            plot_roc_curve(rocs, OUTPUT_NAME)

    means = mean_results(fscores)
    with open('./values/' + OUTPUT_NAME + '.txt', 'a') as outvalue:
        for item in fscores:
            outvalue.write(str(item) + '\n')
        for item in means:
            outvalue.write(str(item) + '\n')
    print(fscores)
def main():
    PATH = str(args.path)
    DATASET = str(args.file)
    ITERATIONS = int(args.rept)
    KNOWN_SET_SIZE = float(args.known_set_size)
    TRAIN_SET_SIZE = float(args.train_set_size)
    NUM_HASH = int(args.hash)

    DATASET = DATASET.replace('-FEATURE-VECTORS.bin', '')
    OUTPUT_NAME = 'HSVM_' + DATASET + '_' + str(NUM_HASH) + '_' + str(
        KNOWN_SET_SIZE) + '_' + str(TRAIN_SET_SIZE) + '_' + str(ITERATIONS)

    prs = []
    rocs = []
    with Parallel(n_jobs=-2, verbose=11,
                  backend='multiprocessing') as parallel_pool:
        for index in range(ITERATIONS):
            print('ITERATION #%s' % str(index + 1))
            pr, roc = svmhface(args, parallel_pool)
            prs.append(pr)
            rocs.append(roc)

            with open('./files/' + OUTPUT_NAME + '.file', 'w') as outfile:
                pickle.dump([prs, rocs], outfile)

            plot_precision_recall(prs, OUTPUT_NAME)
            plot_roc_curve(rocs, OUTPUT_NAME)
Пример #4
0
def main():
    fscores = []
    prs = []
    rocs = []
    with Parallel(n_jobs=1, verbose=15,
                  backend='multiprocessing') as parallel_pool:
        for index in range(ITERATIONS):
            keras_backend.clear_session()
            keras_session = tensorflow.Session()
            keras_backend.set_session(keras_session)

            print('ITERATION #%s' % str(index + 1))
            pr, roc, fscore = fcnhface(args, parallel_pool)
            fscores.append(fscore)
            prs.append(pr)
            rocs.append(roc)

            with open('./files/plot_' + OUTPUT_NAME + '.file', 'w') as outfile:
                pickle.dump([prs, rocs], outfile)

            plot_precision_recall(prs, OUTPUT_NAME)
            plot_roc_curve(rocs, OUTPUT_NAME)

    means = mean_results(fscores)
    with open('./values/' + OUTPUT_NAME + '.txt', 'a') as outvalue:
        for item in fscores:
            outvalue.write(str(item) + '\n')
        for item in means:
            outvalue.write(str(item) + '\n')
    print(fscores)
def main():
    PATH = str(args.path)
    DATASET = str(args.file)
    DESCRIPTOR = str(args.desc)
    ITERATIONS = int(args.rept)
    NUM_HASH = int(args.hash)
    OUTPUT_NAME = 'OC-SVM_' + DATASET.replace(
        '.txt',
        '') + '_' + str(NUM_HASH) + '_' + DESCRIPTOR + '_' + str(ITERATIONS)

    prs = []
    rocs = []
    for index in range(ITERATIONS):
        print('ITERATION #%s' % str(index + 1))
        pr, roc = svm_oneclass(args)
        prs.append(pr)
        rocs.append(roc)

    with open('./files/' + OUTPUT_NAME + '.file', 'w') as outfile:
        pickle.dump([prs, rocs], outfile)

    plot_precision_recall(prs, OUTPUT_NAME)
    plot_roc_curve(rocs, OUTPUT_NAME)
Пример #6
0
import os
import pickle

from auxiliar import generate_precision_recall, plot_precision_recall
from auxiliar import generate_roc_curve, plot_roc_curve

path_files = os.listdir('./')
print path_files

for file in path_files:
    if file.endswith('.file'):
        file_path = './' + file

        with open(file_path) as infile:
            file_prs, file_rocs = pickle.load(infile)

        plot_precision_recall(file_prs, file_path.replace('.file', '.jpg'))
        plot_roc_curve(file_rocs, file_path.replace('.file', '.jpg'))