def test_SplitCifar10_benchmark_download_once(self): global CIFAR10_DOWNLOADS CIFAR10_DOWNLOADS = 0 benchmark = SplitCIFAR10(5) self.assertEqual(5, len(benchmark.train_stream)) self.assertEqual(5, len(benchmark.test_stream)) self.assertEqual(1, CIFAR10_DOWNLOADS)
def test_SplitCifar10_scenario_download_once(self): global CIFAR10_DOWNLOADS CIFAR10_DOWNLOADS = 0 scenario = SplitCIFAR10(5) self.assertEqual(5, len(scenario.train_stream)) self.assertEqual(5, len(scenario.test_stream)) self.assertEqual(1, CIFAR10_DOWNLOADS)
def load_ar1_scenario(self, fast_test=False): """ Returns a NC Scenario from a fake dataset of 10 classes, 5 experiences, 2 classes per experience. This toy scenario is intended :param fast_test: if True loads fake data, MNIST otherwise. """ if fast_test: n_samples_per_class = 50 dataset = make_classification(n_samples=10 * n_samples_per_class, n_classes=10, n_features=224 * 224 * 3, n_informative=6, n_redundant=0) X = torch.from_numpy(dataset[0]).reshape(-1, 3, 224, 224).float() y = torch.from_numpy(dataset[1]).long() train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.6, shuffle=True, stratify=y) train_dataset = TensorDataset(train_X, train_y) test_dataset = TensorDataset(test_X, test_y) my_nc_scenario = nc_scenario(train_dataset, test_dataset, 5, task_labels=False) else: train_transform = transforms.Compose([ Resize(224), ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) test_transform = transforms.Compose([ Resize(224), ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) my_nc_scenario = SplitCIFAR10(5, train_transform=train_transform, eval_transform=test_transform) return my_nc_scenario
def main(cuda: int): # --- CONFIG device = torch.device( f"cuda:{cuda}" if torch.cuda.is_available() else "cpu" ) # --- SCENARIO CREATION scenario = SplitCIFAR10(n_experiences=2, seed=42) # --------- # MODEL CREATION model = SimpleMLP(num_classes=scenario.n_classes, input_size=196608 // 64) # choose some metrics and evaluation method eval_plugin = EvaluationPlugin( accuracy_metrics(stream=True, experience=True), images_samples_metrics( on_train=True, on_eval=True, n_cols=10, n_rows=10, ), labels_repartition_metrics( # image_creator=repartition_bar_chart_image_creator, on_train=True, on_eval=True, ), loggers=[ TensorboardLogger(f"tb_data/{datetime.now()}"), InteractiveLogger(), ], ) # CREATE THE STRATEGY INSTANCE (NAIVE) cl_strategy = Naive( model, Adam(model.parameters()), train_mb_size=128, train_epochs=1, eval_mb_size=128, device=device, plugins=[ReplayPlugin(mem_size=1_000)], evaluator=eval_plugin, ) # TRAINING LOOP for i, experience in enumerate(scenario.train_stream, 1): cl_strategy.train(experience) cl_strategy.eval(scenario.test_stream[:i])
def main(args): # Device config device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available() and args.cuda >= 0 else "cpu") # --------- # --- TRANSFORMATIONS train_transform = transforms.Compose([ Resize(224), ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) test_transform = transforms.Compose([ Resize(224), ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) # --------- # --- SCENARIO CREATION scenario = SplitCIFAR10(5, train_transform=train_transform, eval_transform=test_transform) # --------- # CREATE THE STRATEGY INSTANCE cl_strategy = AR1(criterion=CrossEntropyLoss(), device=device) # TRAINING LOOP print('Starting experiment...') results = [] for experience in scenario.train_stream: print("Start of experience: ", experience.current_experience) print("Current Classes: ", experience.classes_in_this_experience) cl_strategy.train(experience, num_workers=4) print('Training completed') print('Computing accuracy on the whole test set') results.append(cl_strategy.eval(scenario.test_stream, num_workers=4))
def test_SplitCifar10_benchmark(self): benchmark = SplitCIFAR10(5) self.assertEqual(5, len(benchmark.train_stream)) self.assertEqual(5, len(benchmark.test_stream)) train_sz = 0 for experience in benchmark.train_stream: self.assertIsInstance(experience, Experience) train_sz += len(experience.dataset) # Regression test for 575 load_experience_train_eval(experience) self.assertEqual(50000, train_sz) test_sz = 0 for experience in benchmark.test_stream: self.assertIsInstance(experience, Experience) test_sz += len(experience.dataset) # Regression test for 575 load_experience_train_eval(experience) self.assertEqual(10000, test_sz)
def main(args): # --- CONFIG device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available() and args.cuda >= 0 else "cpu") # --------- # --- TRANSFORMATIONS train_transform = transforms.Compose([ Resize(224), ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) test_transform = transforms.Compose([ Resize(224), ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) # --------- # --- SCENARIO CREATION scenario = SplitCIFAR10(5, train_transform=train_transform, eval_transform=test_transform) # --------- # MODEL CREATION model = MobilenetV1() adapt_classification_layer(model, scenario.n_classes, bias=False) # DEFINE THE EVALUATION PLUGIN AND LOGGER my_logger = TensorboardLogger(tb_log_dir="logs", tb_log_exp_name="logging_example") # print to stdout interactive_logger = InteractiveLogger() evaluation_plugin = EvaluationPlugin( accuracy_metrics(minibatch=True, epoch=True, experience=True, stream=True), loss_metrics(minibatch=True, epoch=True, experience=True, stream=True), ExperienceForgetting(), loggers=[my_logger, interactive_logger]) # CREATE THE STRATEGY INSTANCE (NAIVE with the Synaptic Intelligence plugin) cl_strategy = SynapticIntelligence(model, Adam(model.parameters(), lr=0.001), CrossEntropyLoss(), si_lambda=0.0001, train_mb_size=128, train_epochs=4, eval_mb_size=128, device=device, evaluator=evaluation_plugin) # TRAINING LOOP print('Starting experiment...') results = [] for experience in scenario.train_stream: print("Start of experience: ", experience.current_experience) print("Current Classes: ", experience.classes_in_this_experience) cl_strategy.train(experience) print('Training completed') print('Computing accuracy on the whole test set') results.append(cl_strategy.eval(scenario.test_stream))
def main(): args = parser.parse_args() args.cuda = args.cuda == 'yes' args.disable_pbar = args.disable_pbar == 'yes' args.stable_sgd = args.stable_sgd == 'yes' print(f"args={vars(args)}") device = torch.device("cuda:0" if torch.cuda.is_available() and args.cuda else "cpu") print(f'Using device: {device}') # unique identifier uid = uuid.uuid4().hex if args.uid is None else args.uid now = str(datetime.datetime.now().date()) + "_" + ':'.join(str(datetime.datetime.now().time()).split(':')[:-1]) runname = 'T={}_id={}'.format(now, uid) if not args.resume else args.resume # Paths setupname = [args.strategy, args.exp_name, args.model, args.scenario] parentdir = os.path.join(args.save_path, '_'.join(setupname)) results_path = Path(os.path.join(parentdir, runname)) results_path.mkdir(parents=True, exist_ok=True) tb_log_dir = os.path.join(results_path, 'tb_run') # Group all runs # Eval results eval_metric = 'Top1_Acc_Stream/eval_phase/test_stream' eval_results_dir = results_path / eval_metric.split('/')[0] eval_results_dir.mkdir(parents=True, exist_ok=True) eval_result_files = [] # To avg over seeds seeds = [args.seed] if args.seed is not None else list(range(args.n_seeds)) for seed in seeds: # initialize seeds print("STARTING SEED {}/{}".format(seed, len(seeds) - 1)) set_seed(seed) # create scenario if args.scenario == 'smnist': inputsize = 28 * 28 scenario = SplitMNIST(n_experiences=5, return_task_id=False, seed=seed, fixed_class_order=[i for i in range(10)]) elif args.scenario == 'CIFAR10': scenario = SplitCIFAR10(n_experiences=5, return_task_id=False, seed=seed, fixed_class_order=[i for i in range(10)]) inputsize = (3, 32, 32) elif args.scenario == 'miniimgnet': scenario = SplitMiniImageNet(args.dset_rootpath, n_experiences=20, return_task_id=False, seed=seed, fixed_class_order=[i for i in range(100)]) inputsize = (3, 84, 84) else: raise ValueError("Wrong scenario name.") print(f"Scenario = {args.scenario}") if args.model == 'simple_mlp': model = MyMLP(input_size=inputsize, hidden_size=args.hs) elif args.model == 'resnet18': if not args.stable_sgd: assert args.drop_prob == 0 model = ResNet18(inputsize, scenario.n_classes, drop_prob=args.drop_prob) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=args.lr) # Paths eval_results_file = eval_results_dir / f'seed={seed}.csv' # LOGGING tb_logger = TensorboardLogger(tb_log_dir=tb_log_dir, tb_log_exp_name=f'seed={seed}.pt') # log to Tensorboard print_logger = TextLogger() if args.disable_pbar else InteractiveLogger() # print to stdout eval_logger = EvalTextLogger(metric_filter=eval_metric, file=open(eval_results_file, 'a')) eval_result_files.append(eval_results_file) # METRICS eval_plugin = EvaluationPlugin( accuracy_metrics(experience=True, stream=True), loss_metrics(minibatch=True, experience=True), ExperienceForgetting(), # Test only StreamConfusionMatrix(num_classes=scenario.n_classes, save_image=True), # LOG OTHER STATS # timing_metrics(epoch=True, experience=False), # cpu_usage_metrics(experience=True), # DiskUsageMonitor(), # MinibatchMaxRAM(), # GpuUsageMonitor(0), loggers=[print_logger, tb_logger, eval_logger]) plugins = None if args.strategy == 'replay': plugins = [RehRevPlugin(n_total_memories=args.mem_size, mode=args.replay_mode, # STEP-BACK aversion_steps=args.aversion_steps, aversion_lr=args.aversion_lr, stable_sgd=args.stable_sgd, # Stable SGD lr_decay=args.lr_decay, init_epochs=args.init_epochs # First task epochs )] # CREATE THE STRATEGY INSTANCE (NAIVE) strategy = Naive(model, optimizer, criterion, train_epochs=args.epochs, device=device, train_mb_size=args.bs, evaluator=eval_plugin, plugins=plugins ) # train on the selected scenario with the chosen strategy print('Starting experiment...') for experience in scenario.train_stream: if experience.current_experience == args.until_task: print("CUTTING OF TRAINING AT TASK ", experience.current_experience) break else: print("Start training on step ", experience.current_experience) strategy.train(experience) print("End training on step ", experience.current_experience) print('Computing accuracy on the test set') res = strategy.eval(scenario.test_stream[:args.until_task]) # Gathered by EvalLogger final_results_file = eval_results_dir / f'seed_summary.pt' stat_summarize(eval_result_files, final_results_file) print(f"[FILE:TB-RESULTS]: {tb_log_dir}") print(f"[FILE:FINAL-RESULTS]: {final_results_file}") print("FINISHED SCRIPT")