def main(args): # --- CONFIG device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available() and args.cuda >= 0 else "cpu") # --------- # --- TRANSFORMATIONS train_transform = transforms.Compose([ RandomCrop(28, padding=4), ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) test_transform = transforms.Compose( [ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))]) # --------- # --- SCENARIO CREATION mnist_train = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/", train=True, download=True, transform=train_transform) mnist_test = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/", train=False, download=True, transform=test_transform) scenario = nc_benchmark(mnist_train, mnist_test, 5, task_labels=False, seed=1234) # --------- # MODEL CREATION model = SimpleMLP(num_classes=scenario.n_classes) # DEFINE THE EVALUATION PLUGIN AND LOGGER # The evaluation plugin manages the metrics computation. # It takes as argument a list of metrics and a list of loggers. # The evaluation plugin calls the loggers to serialize the metrics # and save them in persistent memory or print them in the standard output. # log to text file text_logger = TextLogger(open('log.txt', 'a')) # print to stdout interactive_logger = InteractiveLogger() csv_logger = CSVLogger() eval_plugin = EvaluationPlugin( accuracy_metrics(minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True), loss_metrics(minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True), forgetting_metrics(experience=True, stream=True), bwt_metrics(experience=True, stream=True), forward_transfer_metrics(experience=True, stream=True), cpu_usage_metrics(minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True), timing_metrics(minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True), ram_usage_metrics(every=0.5, minibatch=True, epoch=True, experience=True, stream=True), gpu_usage_metrics(args.cuda, every=0.5, minibatch=True, epoch=True, experience=True, stream=True), disk_usage_metrics(minibatch=True, epoch=True, experience=True, stream=True), MAC_metrics(minibatch=True, epoch=True, experience=True), loggers=[interactive_logger, text_logger, csv_logger], collect_all=True) # collect all metrics (set to True by default) # CREATE THE STRATEGY INSTANCE (NAIVE) cl_strategy = Naive(model, SGD(model.parameters(), lr=0.001, momentum=0.9), CrossEntropyLoss(), train_mb_size=500, train_epochs=1, eval_mb_size=100, device=device, evaluator=eval_plugin, eval_every=1) # TRAINING LOOP print('Starting experiment...') results = [] for i, experience in enumerate(scenario.train_stream): print("Start of experience: ", experience.current_experience) print("Current Classes: ", experience.classes_in_this_experience) # train returns a dictionary containing last recorded value # for each metric. res = cl_strategy.train(experience, eval_streams=[scenario.test_stream]) print('Training completed') print('Computing accuracy on the whole test set') # test returns a dictionary with the last metric collected during # evaluation on that stream results.append(cl_strategy.eval(scenario.test_stream)) print(f"Test metrics:\n{results}") # Dict with all the metric curves, # only available when `collect_all` is True. # Each entry is a (x, metric value) tuple. # You can use this dictionary to manipulate the # metrics without avalanche. all_metrics = cl_strategy.evaluator.get_all_metrics() print(f"Stored metrics: {list(all_metrics.keys())}")
def main(args): # --- CONFIG device = torch.device( f"cuda:{args.cuda}" if torch.cuda.is_available() and args.cuda >= 0 else "cpu" ) # --------- tr_ds = [ AvalancheTensorDataset( torch.randn(10, 3), torch.randint(0, 3, (10,)).tolist(), task_labels=torch.randint(0, 5, (10,)).tolist(), ) for _ in range(3) ] ts_ds = [ AvalancheTensorDataset( torch.randn(10, 3), torch.randint(0, 3, (10,)).tolist(), task_labels=torch.randint(0, 5, (10,)).tolist(), ) for _ in range(3) ] scenario = create_multi_dataset_generic_benchmark( train_datasets=tr_ds, test_datasets=ts_ds ) # --------- # MODEL CREATION model = SimpleMLP(num_classes=3, input_size=3) # DEFINE THE EVALUATION PLUGIN AND LOGGER # The evaluation plugin manages the metrics computation. # It takes as argument a list of metrics and a list of loggers. # The evaluation plugin calls the loggers to serialize the metrics # and save them in persistent memory or print them in the standard output. # log to text file text_logger = TextLogger(open("log.txt", "a")) # print to stdout interactive_logger = InteractiveLogger() csv_logger = CSVLogger() eval_plugin = EvaluationPlugin( accuracy_metrics( minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True, ), loss_metrics( minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True, ), forgetting_metrics(experience=True, stream=True), bwt_metrics(experience=True, stream=True), cpu_usage_metrics( minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True, ), timing_metrics( minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True, ), ram_usage_metrics( every=0.5, minibatch=True, epoch=True, experience=True, stream=True ), gpu_usage_metrics( args.cuda, every=0.5, minibatch=True, epoch=True, experience=True, stream=True, ), disk_usage_metrics( minibatch=True, epoch=True, experience=True, stream=True ), MAC_metrics(minibatch=True, epoch=True, experience=True), loggers=[interactive_logger, text_logger, csv_logger], collect_all=True, ) # collect all metrics (set to True by default) # CREATE THE STRATEGY INSTANCE (NAIVE) cl_strategy = Naive( model, SGD(model.parameters(), lr=0.001, momentum=0.9), CrossEntropyLoss(), train_mb_size=500, train_epochs=1, eval_mb_size=100, device=device, evaluator=eval_plugin, eval_every=1, ) # TRAINING LOOP print("Starting experiment...") results = [] for i, experience in enumerate(scenario.train_stream): print("Start of experience: ", experience.current_experience) print("Current Classes: ", experience.classes_in_this_experience) # train returns a dictionary containing last recorded value # for each metric. res = cl_strategy.train(experience, eval_streams=[scenario.test_stream]) print("Training completed") print("Computing accuracy on the whole test set") # test returns a dictionary with the last metric collected during # evaluation on that stream results.append(cl_strategy.eval(scenario.test_stream)) print(f"Test metrics:\n{results}") # Dict with all the metric curves, # only available when `collect_all` is True. # Each entry is a (x, metric value) tuple. # You can use this dictionary to manipulate the # metrics without avalanche. all_metrics = cl_strategy.evaluator.get_all_metrics() print(f"Stored metrics: {list(all_metrics.keys())}")