Пример #1
0
    def test_KnowledgeGradient(self):

        model = KnowledgeGradient()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            feature_names=self.feature_names,
            metric_names=self.metric_names,
            task_features=[],
            fidelity_features=[],
        )

        n = 2

        X_dummy = torch.rand(1, n, 4, dtype=self.dtype, device=self.device)
        acq_dummy = torch.tensor(0.0, dtype=self.dtype, device=self.device)

        with mock.patch(self.optimize_acqf) as mock_optimize_acqf:
            mock_optimize_acqf.side_effect = [(X_dummy, acq_dummy)]
            Xgen, wgen, _, __ = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": self.optimizer_options,
                },
            )
            self.assertTrue(torch.equal(Xgen, X_dummy.cpu()))
            self.assertTrue(torch.equal(wgen, torch.ones(n, dtype=self.dtype)))

            # called once, the best point call is not caught by mock
            mock_optimize_acqf.assert_called_once()

        ini_dummy = torch.rand(10, 32, 3, dtype=self.dtype, device=self.device)
        optimizer_options2 = {
            "num_restarts": 1,
            "raw_samples": 1,
            "maxiter": 5,
            "batch_limit": 1,
            "partial_restarts": 2,
        }
        with mock.patch(
            "ax.models.torch.botorch_kg.gen_one_shot_kg_initial_conditions",
            return_value=ini_dummy,
        ) as mock_warmstart_initialization:
            Xgen, wgen, _, __ = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": optimizer_options2,
                },
            )
            mock_warmstart_initialization.assert_called_once()

        obj = ScalarizedObjective(weights=self.objective_weights)
        dummy_acq = PosteriorMean(model=model.model, objective=obj)
        with mock.patch(
            "ax.models.torch.utils.PosteriorMean", return_value=dummy_acq
        ) as mock_posterior_mean:
            Xgen, wgen, _, __ = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": optimizer_options2,
                },
            )
            self.assertEqual(mock_posterior_mean.call_count, 2)

        # Check best point selection within bounds (some numerical tolerance)
        xbest = model.best_point(
            bounds=self.bounds, objective_weights=self.objective_weights
        )
        lb = torch.tensor([b[0] for b in self.bounds]) - 1e-5
        ub = torch.tensor([b[1] for b in self.bounds]) + 1e-5
        self.assertTrue(torch.all(xbest <= ub))
        self.assertTrue(torch.all(xbest >= lb))

        # test error message
        linear_constraints = (
            torch.tensor([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]),
            torch.tensor([[0.5], [1.0]]),
        )
        with self.assertRaises(UnsupportedError):
            Xgen, wgen = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=linear_constraints,
            )

        # test input warping
        self.assertFalse(model.use_input_warping)
        model = KnowledgeGradient(use_input_warping=True)
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            feature_names=self.feature_names,
            metric_names=self.metric_names,
            task_features=[],
            fidelity_features=[],
        )
        self.assertTrue(model.use_input_warping)
        self.assertTrue(hasattr(model.model, "input_transform"))
        self.assertIsInstance(model.model.input_transform, Warp)

        # test loocv pseudo likelihood
        self.assertFalse(model.use_loocv_pseudo_likelihood)
        model = KnowledgeGradient(use_loocv_pseudo_likelihood=True)
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            feature_names=self.feature_names,
            metric_names=self.metric_names,
            task_features=[],
            fidelity_features=[],
        )
        self.assertTrue(model.use_loocv_pseudo_likelihood)
Пример #2
0
    def test_KnowledgeGradient(self):

        model = KnowledgeGradient()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            feature_names=self.feature_names,
            metric_names=self.metric_names,
            task_features=[],
            fidelity_features=[],
        )

        n = 2

        best_point_dummy = torch.rand(1,
                                      3,
                                      dtype=self.dtype,
                                      device=self.device)
        X_dummy = torch.rand(1, n, 4, dtype=self.dtype, device=self.device)
        acq_dummy = torch.tensor(0.0, dtype=self.dtype, device=self.device)

        with mock.patch(self.optimize_acqf) as mock_optimize_acqf:
            mock_optimize_acqf.side_effect = [
                (best_point_dummy, None),
                (X_dummy, acq_dummy),
            ]
            Xgen, wgen, _ = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": self.optimizer_options,
                },
            )
            self.assertTrue(torch.equal(Xgen, X_dummy.cpu()))
            self.assertTrue(torch.equal(wgen, torch.ones(n, dtype=self.dtype)))
            mock_optimize_acqf.assert_called(
            )  # called twice, once for best_point

        ini_dummy = torch.rand(10, 32, 3, dtype=self.dtype, device=self.device)
        optimizer_options2 = {
            "num_restarts": 1,
            "raw_samples": 1,
            "maxiter": 5,
            "batch_limit": 1,
            "partial_restarts": 2,
        }
        with mock.patch(
                "ax.models.torch.botorch_kg.gen_one_shot_kg_initial_conditions",
                return_value=ini_dummy,
        ) as mock_warmstart_initialization:
            Xgen, wgen, _ = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": optimizer_options2,
                },
            )
            mock_warmstart_initialization.assert_called_once()

        obj = ScalarizedObjective(weights=self.objective_weights)
        dummy_acq = PosteriorMean(model=model.model, objective=obj)
        with mock.patch("ax.models.torch.botorch_kg.PosteriorMean",
                        return_value=dummy_acq) as mock_posterior_mean:
            Xgen, wgen, _ = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": optimizer_options2,
                },
            )
            self.assertEqual(mock_posterior_mean.call_count, 2)

        # Check best point selection
        X_dummy = torch.rand(3)
        acq_dummy = torch.tensor(0.0)
        with mock.patch(self.optimize_acqf,
                        return_value=(X_dummy,
                                      acq_dummy)) as mock_optimize_acqf:
            xbest = model.best_point(bounds=self.bounds,
                                     objective_weights=self.objective_weights)
            self.assertTrue(torch.equal(xbest, X_dummy))
            mock_optimize_acqf.assert_called_once()

        # test error message
        linear_constraints = (
            torch.tensor([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]),
            torch.tensor([[0.5], [1.0]]),
        )
        with self.assertRaises(UnsupportedError):
            Xgen, wgen = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=linear_constraints,
            )
Пример #3
0
    def test_KnowledgeGradient_multifidelity(self):
        model = KnowledgeGradient()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            task_features=[],
            feature_names=self.feature_names,
            metric_names=["L2NormMetric"],
            fidelity_features=[2],
        )

        # Check best point selection within bounds (some numerical tolerance)
        xbest = model.best_point(
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            target_fidelities={2: 5.0},
        )
        lb = torch.tensor([b[0] for b in self.bounds]) - 1e-5
        ub = torch.tensor([b[1] for b in self.bounds]) + 1e-5
        self.assertTrue(torch.all(xbest <= ub))
        self.assertTrue(torch.all(xbest >= lb))

        # check error when no target fidelities are specified
        with self.assertRaises(RuntimeError):
            model.best_point(
                bounds=self.bounds, objective_weights=self.objective_weights
            )

        # check generation
        n = 2
        X_dummy = torch.zeros(1, n, 3, dtype=self.dtype, device=self.device)
        acq_dummy = torch.tensor(0.0, dtype=self.dtype, device=self.device)
        dummy = (X_dummy, acq_dummy)
        with mock.patch(self.optimize_acqf, side_effect=[dummy]) as mock_optimize_acqf:
            Xgen, wgen, _, __ = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": self.optimizer_options,
                },
                target_fidelities={2: 5.0},
            )
            self.assertTrue(torch.equal(Xgen, X_dummy.cpu()))
            self.assertTrue(torch.equal(wgen, torch.ones(n, dtype=self.dtype)))
            mock_optimize_acqf.assert_called()  # called twice, once for best_point

        # test error message
        linear_constraints = (
            torch.tensor([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]),
            torch.tensor([[0.5], [1.0]]),
        )
        with self.assertRaises(UnsupportedError):
            xbest = model.best_point(
                bounds=self.bounds,
                linear_constraints=linear_constraints,
                objective_weights=self.objective_weights,
                target_fidelities={2: 1.0},
            )

        # test input warping
        self.assertFalse(model.use_input_warping)
        model = KnowledgeGradient(use_input_warping=True)
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            task_features=[],
            feature_names=self.feature_names,
            metric_names=["L2NormMetric"],
            fidelity_features=[2],
        )
        self.assertTrue(model.use_input_warping)
        self.assertTrue(hasattr(model.model, "input_transform"))
        self.assertIsInstance(model.model.input_transform, Warp)

        # test loocv pseudo likelihood
        self.assertFalse(model.use_loocv_pseudo_likelihood)
        model = KnowledgeGradient(use_loocv_pseudo_likelihood=True)
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            task_features=[],
            feature_names=self.feature_names,
            metric_names=["L2NormMetric"],
            fidelity_features=[2],
        )
        self.assertTrue(model.use_loocv_pseudo_likelihood)
Пример #4
0
    def test_KnowledgeGradient_multifidelity(self):
        model = KnowledgeGradient()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            task_features=[],
            feature_names=self.feature_names,
            metric_names=[],
            fidelity_features=[-1],
        )

        # Check best point selection
        X_dummy = torch.tensor([1.0, 2.0])
        acq_dummy = torch.tensor(0.0)
        with mock.patch(self.optimize_acqf,
                        return_value=(X_dummy,
                                      acq_dummy)) as mock_optimize_acqf:
            xbest = model.best_point(
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                target_fidelities={2: 1.0},
            )
            self.assertTrue(torch.equal(xbest, torch.tensor([1.0, 2.0, 1.0])))
            mock_optimize_acqf.assert_called_once()

        # check error whenf no target fidelities are specified
        with self.assertRaises(RuntimeError):
            model.best_point(bounds=self.bounds,
                             objective_weights=self.objective_weights)

        # check generation
        n = 2
        X_dummy = torch.zeros(12, 1, 2, dtype=self.dtype, device=self.device)
        X_dummy2 = torch.zeros(1, n, 3, dtype=self.dtype, device=self.device)
        acq_dummy = torch.tensor(0.0, dtype=self.dtype, device=self.device)
        dummy1 = (X_dummy, acq_dummy)
        dummy2 = (X_dummy2, acq_dummy)
        with mock.patch(self.optimize_acqf,
                        side_effect=[dummy1, dummy2, dummy1,
                                     dummy2]) as mock_optimize_acqf:
            Xgen, wgen, _ = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": self.optimizer_options,
                },
                target_fidelities={2: 1.0},
            )
            self.assertTrue(torch.equal(Xgen, X_dummy2.cpu()))
            self.assertTrue(torch.equal(wgen, torch.ones(n, dtype=self.dtype)))
            mock_optimize_acqf.assert_called(
            )  # called twice, once for best_point

        # test error message
        linear_constraints = (
            torch.tensor([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]),
            torch.tensor([[0.5], [1.0]]),
        )
        with self.assertRaises(UnsupportedError):
            xbest = model.best_point(
                bounds=self.bounds,
                linear_constraints=linear_constraints,
                objective_weights=self.objective_weights,
                target_fidelities={2: 1.0},
            )