Пример #1
0
 def __call__(self, parser, namespace, values, option_string=None):
     from azure.mgmt.monitor.models import MetricTrigger
     if len(values) == 1:
         # workaround because CMD.exe eats > character... Allows condition to be
         # specified as a quoted expression
         values = values[0].split(' ')
     name_offset = 0
     try:
         metric_name = ' '.join(values[name_offset:-4])
         operator = get_autoscale_operator_map()[values[-4]]
         threshold = int(values[-3])
         aggregation = get_autoscale_aggregation_map()[values[-2].lower()]
         window = period_type(values[-1])
     except (IndexError, KeyError):
         from knack.util import CLIError
         raise CLIError('usage error: --condition METRIC {==,!=,>,>=,<,<=} '
                        'THRESHOLD {avg,min,max,total,count} PERIOD')
     condition = MetricTrigger(
         metric_name=metric_name,
         metric_resource_uri=None,  # will be filled in later
         time_grain=None,  # will be filled in later
         statistic=None,  # will be filled in later
         time_window=window,
         time_aggregation=aggregation,
         operator=operator,
         threshold=threshold)
     namespace.condition = condition
Пример #2
0
def validate_autoscale_timegrain(namespace):
    from azure.mgmt.monitor.models import MetricTrigger
    from azure.cli.command_modules.monitor.actions import period_type
    from azure.cli.command_modules.monitor.util import get_autoscale_statistic_map

    values = namespace.timegrain
    if len(values) == 1:
        # workaround because CMD.exe eats > character... Allows condition to be
        # specified as a quoted expression
        values = values[0].split(' ')
    name_offset = 0
    try:
        time_grain = period_type(values[1])
        name_offset += 1
    except ValueError:
        time_grain = period_type('1m')
    try:
        statistic = get_autoscale_statistic_map()[values[0]]
        name_offset += 1
    except KeyError:
        statistic = get_autoscale_statistic_map()['avg']
    timegrain = MetricTrigger(metric_name=None,
                              metric_resource_uri=None,
                              time_grain=time_grain,
                              statistic=statistic,
                              time_window=None,
                              time_aggregation=None,
                              operator=None,
                              threshold=None)
    namespace.timegrain = timegrain
 def create_rule_instance(params):
     rule = params.copy()
     rule['metric_resource_uri'] = rule.get('metric_resource_uri', self.target)
     rule['time_grain'] = timedelta(minutes=rule.get('time_grain', 0))
     rule['time_window'] = timedelta(minutes=rule.get('time_window', 0))
     rule['cooldown'] = timedelta(minutes=rule.get('cooldown', 0))
     return ScaleRule(metric_trigger=MetricTrigger(**rule), scale_action=ScaleAction(**rule))
Пример #4
0
 def result(self):
     from azure.mgmt.monitor.models import MetricTrigger, ScaleRuleMetricDimension
     dim_params = self.parameters.get('dimensions', [])
     dimensions = []
     for dim in dim_params:
         dimensions.append(ScaleRuleMetricDimension(**dim))
     self.parameters['dimensions'] = dimensions
     self.parameters['metric_resource_uri'] = None  # will be filled in later
     self.parameters['time_grain'] = None  # will be filled in later
     self.parameters['statistic'] = None  # will be filled in later
     return MetricTrigger(**self.parameters)
def create_autoscaling_settings(ExistingVmScaleSetName, VmScaleSetID,
                                resourceGroupName):
    NewVmScaleSetName = VmScaleSetID.split('/')[-1]
    existing_asg = monitor_client.autoscale_settings.get(
        resource_group_name=resourceGroupName,
        autoscale_setting_name=ExistingVmScaleSetName)
    rules = [
        ScaleRule(
            metric_trigger=MetricTrigger(
                metric_name=i.metric_trigger.metric_name,
                #metric_namespace=i.metric_trigger.additional_properties['metricNamespace'],
                metric_resource_uri=VmScaleSetID,
                time_grain=i.metric_trigger.time_grain,
                statistic=i.metric_trigger.statistic,
                time_window=i.metric_trigger.time_window,
                time_aggregation=i.metric_trigger.time_aggregation,
                operator=i.metric_trigger.operator,
                threshold=i.metric_trigger.threshold
                #dimensions = i.metric_trigger.additional_properties['dimensions']
            ),
            scale_action=i.scale_action)
        for i in existing_asg.profiles[0].rules
    ]
    profile = AutoscaleProfile(name=existing_asg.profiles[0].name,
                               capacity=existing_asg.profiles[0].capacity,
                               rules=rules,
                               fixed_date=None,
                               recurrence=None)
    parameters = AutoscaleSettingResource(
        location=existing_asg.location,
        tags=existing_asg.tags,
        profiles=[profile],
        notifications=existing_asg.notifications,
        enabled=True,
        autoscale_setting_resource_name=NewVmScaleSetName,
        target_resource_uri=VmScaleSetID)
    new_asg = monitor_client.autoscale_settings.create_or_update(
        resource_group_name=resourceGroupName,
        autoscale_setting_name=NewVmScaleSetName,
        parameters=parameters)
Пример #6
0
def shutdown_scaleset_rule(queue_uri: str) -> ScaleRule:
    return ScaleRule(
        # Scale in if there are 0 or more messages in the queue (aka: every time)
        metric_trigger=MetricTrigger(
            metric_name="ApproximateMessageCount",
            metric_resource_uri=queue_uri,
            # Check every 10 minutes
            time_grain=timedelta(minutes=5),
            # The average amount of messages there are in the pool queue
            time_aggregation=TimeAggregationType.AVERAGE,
            statistic=MetricStatisticType.SUM,
            # Over the past 10 minutes
            time_window=timedelta(minutes=5),
            operator=ComparisonOperationType.GREATER_THAN_OR_EQUAL,
            threshold=0,
            divide_per_instance=False,
        ),
        scale_action=ScaleAction(
            direction=ScaleDirection.DECREASE,
            type=ScaleType.CHANGE_COUNT,
            value=1,
            cooldown=timedelta(minutes=5),
        ),
    )
Пример #7
0
def create_auto_scale_profile(
    queue_uri: str,
    min: int,
    max: int,
    default: int,
    scale_out_amount: int,
    scale_out_cooldown: int,
    scale_in_amount: int,
    scale_in_cooldown: int,
) -> AutoscaleProfile:
    return AutoscaleProfile(
        name=str(uuid.uuid4()),
        capacity=ScaleCapacity(minimum=min, maximum=max, default=max),
        # Auto scale tuning guidance:
        # https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
        rules=[
            ScaleRule(
                metric_trigger=MetricTrigger(
                    metric_name="ApproximateMessageCount",
                    metric_resource_uri=queue_uri,
                    # Check every 15 minutes
                    time_grain=timedelta(minutes=15),
                    # The average amount of messages there are in the pool queue
                    time_aggregation=TimeAggregationType.AVERAGE,
                    statistic=MetricStatisticType.COUNT,
                    # Over the past 15 minutes
                    time_window=timedelta(minutes=15),
                    # When there's more than 1 message in the pool queue
                    operator=ComparisonOperationType.GREATER_THAN_OR_EQUAL,
                    threshold=1,
                    divide_per_instance=False,
                ),
                scale_action=ScaleAction(
                    direction=ScaleDirection.INCREASE,
                    type=ScaleType.CHANGE_COUNT,
                    value=scale_out_amount,
                    cooldown=timedelta(minutes=scale_out_cooldown),
                ),
            ),
            # Scale in
            ScaleRule(
                # Scale in if no work in the past 20 mins
                metric_trigger=MetricTrigger(
                    metric_name="ApproximateMessageCount",
                    metric_resource_uri=queue_uri,
                    # Check every 10 minutes
                    time_grain=timedelta(minutes=10),
                    # The average amount of messages there are in the pool queue
                    time_aggregation=TimeAggregationType.AVERAGE,
                    statistic=MetricStatisticType.SUM,
                    # Over the past 10 minutes
                    time_window=timedelta(minutes=10),
                    # When there's no messages in the pool queue
                    operator=ComparisonOperationType.EQUALS,
                    threshold=0,
                    divide_per_instance=False,
                ),
                scale_action=ScaleAction(
                    direction=ScaleDirection.DECREASE,
                    type=ScaleType.CHANGE_COUNT,
                    value=scale_in_amount,
                    cooldown=timedelta(minutes=scale_in_cooldown),
                ),
            ),
        ],
    )