Пример #1
0
def init():
    global model
    global batch_size

    # Set up logging
    _set_logging_parameters(TASK_TYPE, {})

    parser = argparse.ArgumentParser(
        description="Retrieve model_name and batch_size from arguments.")
    parser.add_argument('--model_name', dest="model_name", required=True)
    parser.add_argument('--batch_size',
                        dest="batch_size",
                        type=int,
                        required=False)
    args, _ = parser.parse_known_args()

    batch_size = args.batch_size

    model_path = os.path.join(Model.get_model_path(args.model_name),
                              'model.pt')
    print(model_path)

    try:
        logger.info("Loading model from path: {}.".format(model_path))
        model_settings = {}
        model = load_model(TASK_TYPE, model_path, **model_settings)
        logger.info("Loading successful.")
    except Exception as e:
        logging_utilities.log_traceback(e, logger)
        raise
Пример #2
0
def init():
    global model
    # This name is model.id of model that we want to deploy deserialize the model file back
    # into a sklearn model
    model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'model.pkl')
    try:
        model = joblib.load(model_path)
    except Exception as e:
        path = os.path.normpath(model_path)
        path_split = path.split(os.sep)
        log_server.update_custom_dimensions({'model_name': path_split[1], 'model_version': path_split[2]})
        logging_utilities.log_traceback(e, logger)
        raise
def init():
    global model
    #model_path = Model.get_model_path("best_hyperdrive_model")
    model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'model.joblib')
    path = os.path.normpath(model_path)
    path_split = path.split(os.sep)
    log_server.update_custom_dimensions({
        'model_name': path_split[1],
        'model_version': path_split[2]
    })
    try:
        logger.info("Loading model from path.")
        model = joblib.load(model_path)
        logger.info("Loading successful.")
    except Exception as e:
        logging_utilities.log_traceback(e, logger)
        raise
def init():
    global model
    # This name is model.id of model that we want to deploy deserialize the model file back
    # into a sklearn model
    model_base_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'outputs')
    model_path = os.path.join(model_base_path, 'model.pkl')
    path = os.path.normpath(model_path)
    path_split = path.split(os.sep)
    log_server.update_custom_dimensions({
        'model_name': path_split[-3],
        'model_version': path_split[-2]
    })
    try:
        logger.info("Loading model from path.")
        model = joblib.load(model_path)
        logger.info("Loading successful.")
    except Exception as e:
        logging_utilities.log_traceback(e, logger)
        raise
def init():
    global model
    # This name is model.id of model that we want to deploy deserialize the model file back
    # into a sklearn model
    #model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'automl_bestmodel.pkl')
    #model_path= Model.get_model_path(model_name="automl_bestmodel.pkl")
    #logger.error(model_path+" Muzammil1")
    model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'model.pkl')
    #aar= os.listdir(model_path)
    #print(aar)
    #logger.error(aar+" Muzammil2")
    path = os.path.normpath(model_path)
    path_split = path.split(os.sep)
    log_server.update_custom_dimensions({'model_name': path_split[1], 'model_version': path_split[2]})
    try:
        logger.info("Loading model from path.")
        model = joblib.load(model_path)
        logger.info("Loading successful.")
    except Exception as e:
        logging_utilities.log_traceback(e, logger)
        raise
Пример #6
0
def run(input_data):
    entry_script = EntryScript()
    logger = entry_script.logger
    os.makedirs('./outputs', exist_ok=True)
    resultList = []
    model_name = None
    current_run = None
    error_message = None
    error_code = None
    error_type = None
    tags_dict = None
    for file in input_data:
        logs = []
        date1 = datetime.datetime.now()
        logger.info('start (' + file + ') ' + str(datetime.datetime.now()))
        file_path = file

        file_name, file_extension = os.path.splitext(
            os.path.basename(file_path))

        try:
            if file_extension.lower() == ".parquet":
                data = pd.read_parquet(file_path)
            else:
                data = pd.read_csv(file_path, parse_dates=[timestamp_column])

            tags_dict = {'ModelType': 'AutoML'}

            for column_name in group_column_names:
                tags_dict.update({
                    column_name:
                    str(data.iat[0, data.columns.get_loc(column_name)])
                })

            if args.retrain_failed_models:
                logger.info('querying for existing models')
                try:
                    tags = [[k, v] for k, v in tags_dict.items()]
                    models = Model.list(current_step_run.experiment.workspace,
                                        tags=tags,
                                        latest=True)

                    if models:
                        logger.info("model already exists for the dataset " +
                                    models[0].name)
                        logs = compose_logs(file_name, models[0], date1)
                        resultList.append(logs)
                        continue
                except Exception as error:
                    logger.info('Failed to list the models. ' +
                                'Error message: ' + str(error))

            tags_dict.update({'InputData': file_path})
            tags_dict.update({'StepRunId': current_step_run.id})
            tags_dict.update({'RunId': current_step_run.parent.id})

            # train model
            fitted_model, current_run = train_model(file_path, data, logger)
            model_string = '_'.join(
                str(v) for k, v in sorted(tags_dict.items())
                if k in group_column_names).lower()
            logger.info("model string to encode " + model_string)
            sha = hashlib.sha256()
            sha.update(model_string.encode())
            model_name = 'automl_' + sha.hexdigest()
            tags_dict.update({'Hash': sha.hexdigest()})
            try:
                logger.info('done training')
                print('Trained best model ' + model_name)

                logger.info(fitted_model)
                logger.info(model_name)

                logger.info('register model')

                current_run.register_model(model_name=model_name,
                                           description='AutoML',
                                           tags=tags_dict)
                print('Registered ' + model_name)
            except Exception as error:
                error_type = ErrorTypes.Unclassified
                error_message = 'Failed to register the model. ' + 'Error message: ' + str(
                    error)
                from azureml.automl.core.shared import logging_utilities
                logging_utilities.log_traceback(error, None)
                logger.info(error_message)

            date2 = datetime.datetime.now()

            logs.append('AutoML')
            logs.append(file_name)
            logs.append(current_run.id)
            logs.append(current_run.get_status())
            logs.append(model_name)
            logs.append(tags_dict)
            logs.append(str(date1))
            logs.append(str(date2))
            logs.append(error_type)
            logs.append(error_code)
            logs.append(error_message)

            logger.info('ending (' + file_path + ') ' + str(date2))

        # 10.1 Log the error message if an exception occurs
        except (ClientException, AutoMLException) as error:
            date2 = datetime.datetime.now()
            error_message = 'Failed to train the model. ' + 'Error : ' + str(
                error)

            logs.append('AutoML')
            logs.append(file_name)

            if current_run:
                logs.append(current_run.id)
                logs.append(current_run.get_status())
            else:
                logs.append(current_run)
                logs.append('Failed')

            logs.append(model_name)
            logs.append(tags_dict)
            logs.append(str(date1))
            logs.append(str(date2))
            if isinstance(error, AutoMLException):
                logs.append(error.error_type)
            else:
                logs.append(None)
            logs.append(get_error_code(error))
            logs.append(error_message)

            logger.info(error_message)
            logger.info('ending (' + file_path + ') ' + str(date2))

        resultList.append(logs)

    result = pd.DataFrame(data=resultList)
    return result