def configure_nccl_settings_from_env(): # Start by collecting parallel env info global_size = get_global_size() local_size = get_local_size() print("local_size = {}".format(local_size)) print("global_size = {}".format(global_size)) set_environment_variables_for_nccl_backend(True, master_port=6105)
config_file = args.config_file gradient_accumulation_steps = args.gradient_accumulation_steps train_batch_size = args.train_batch_size seed = args.seed loss_scale = args.loss_scale load_training_checkpoint = args.load_training_checkpoint max_seq_length = args.max_seq_length max_predictions_per_seq = args.max_predictions_per_seq masked_lm_prob = args.masked_lm_prob local_rank = -1 local_rank = get_local_rank() #local_rank = 0 global_size = get_global_size() local_size = get_local_size() #global_size = 1 #local_size = 1 # TODO use logger print('local_rank = {}'.format(local_rank)) print('global_size = {}'.format(global_size)) print('local_size = {}'.format(local_size)) import socket os.environ['MASTER_ADDR'] = socket.gethostname() os.environ['MASTER_PORT'] = '54965' dist.init_process_group( backend='nccl', #init_method='/gpfs/gpfs0/groups/mozafari/ruixliu/tmp/misc/sharedfile', rank=local_rank, world_size=local_size)
def main(): run = Run.get_context() workspace = run.experiment.workspace # First thing to do is try to set up from environment configure_nccl_settings_from_env() parser = argparse.ArgumentParser(description="PyTorch Object Detection Training") parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=os.getenv("LOCAL_RANK", 0)) parser.add_argument( "--max_steps", type=int, default=0, help="Override number of training steps in the config", ) parser.add_argument("--dataset", type=str, required=True) parser.add_argument( "--skip-test", dest="skip_test", help="Do not test the final model", action="store_true", ) parser.add_argument("--fp16", help="Mixed precision training", action="store_true") parser.add_argument("--amp", help="Mixed precision training", action="store_true") parser.add_argument( "--skip_checkpoint", default=False, action="store_true", help="Whether to save checkpoints", ) parser.add_argument( "--json-summary", help="Out file for DLLogger", default="dllogger.out", type=str, ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() args.fp16 = args.fp16 or args.amp num_gpus = get_global_size() args.distributed = num_gpus > 1 args.local_rank = get_local_rank() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) # Redundant option - Override config parameter with command line input if args.max_steps > 0: cfg.SOLVER.MAX_ITER = args.max_steps if args.skip_checkpoint: cfg.SAVE_CHECKPOINT = False cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir: mkdir(output_dir) if is_main_process(): dllogger.init( backends=[ dllogger.JSONStreamBackend( verbosity=dllogger.Verbosity.VERBOSE, filename=args.json_summary ), dllogger.StdOutBackend( verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step ), ] ) else: dllogger.init(backends=[]) dllogger.log(step="PARAMETER", data={"gpu_count": num_gpus}) # dllogger.log(step="PARAMETER", data={"environment_info": collect_env_info()}) dllogger.log(step="PARAMETER", data={"config_file": args.config_file}) dllogger.log(step="PARAMETER", data={"config": cfg}) if args.fp16: fp16 = True else: fp16 = False if args.local_rank == 0: dllogger.log(step="WEIGHT DOWNLOAD", data={"complete": False}) download_weights(cfg.MODEL.WEIGHT, cfg.PATHS_CATALOG) dllogger.log(step="WEIGHT DOWNLOAD", data={"complete": True}) dllogger.log( step="DATASET MOUNT", data={"complete": False, "dataset": args.dataset} ) coco2017 = Dataset.get_by_name(workspace, args.dataset) cc2017mount = coco2017.mount("/data") cc2017mount.start() dllogger.log( step="DATASET MOUNT", data={"complete": True, "dataset": args.dataset} ) if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend="nccl", init_method="env://") synchronize() model, iters_per_epoch = train( cfg, args.local_rank, args.distributed, fp16, dllogger )
def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model checkpoints and predictions will be written." ) parser.add_argument( "--model_file_location", default=None, type=str, required=True, help= "The directory in the blob storage which contains data and config files." ) ## Other parameters parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json") parser.add_argument( "--predict_file", default=None, type=str, help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json" ) parser.add_argument( "--max_seq_length", default=384, type=int, help= "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ) parser.add_argument( "--doc_stride", default=128, type=int, help= "When splitting up a long document into chunks, how much stride to take between chunks." ) parser.add_argument( "--max_query_length", default=64, type=int, help= "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% " "of training.") parser.add_argument( "--n_best_size", default=20, type=int, help= "The total number of n-best predictions to generate in the nbest_predictions.json " "output file.") parser.add_argument( "--max_answer_length", default=30, type=int, help= "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") parser.add_argument( "--verbose_logging", action='store_true', help= "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument( "--do_lower_case", action='store_true', help= "Whether to lower case the input text. True for uncased models, False for cased models." ) parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument("--model_file", type=str, default="0", help="Path to the Pretrained BERT Encoder File.") args = parser.parse_args() global_size = get_global_size() local_size = get_local_size() set_environment_variables_for_nccl_backend(local_size == global_size) local_rank = get_local_rank() is_distributed = bool(local_rank != -1) args.model_file = os.path.join(args.model_file_location, args.model_file) if not is_distributed or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(local_rank) device = torch.device("cuda", local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(is_distributed), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_predict: raise ValueError( "At least one of `do_train` or `do_predict` must be True.") if args.do_train: if not args.train_file: raise ValueError( "If `do_train` is True, then `train_file` must be specified.") if args.do_predict: if not args.predict_file: raise ValueError( "If `do_predict` is True, then `predict_file` must be specified." ) if os.path.exists(args.output_dir) and os.listdir( args.output_dir) and args.do_train: raise ValueError( "Output directory () already exists and is not empty.") os.makedirs(args.output_dir, exist_ok=True) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) train_examples = None num_train_steps = None if args.do_train: train_examples = read_squad_examples(input_file=args.train_file, is_training=True) num_train_steps = int( len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) # Prepare model model = BertForQuestionAnswering.from_pretrained( args.bert_model, cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(local_rank)) if args.model_file is not "0": logger.info(f"Loading Pretrained Bert Encoder from: {args.model_file}") bert_state_dict = torch.load(args.model_file, map_location=torch.device("cpu")) model.bert.load_state_dict(bert_state_dict) logger.info(f"Pretrained Bert Encoder Loaded from: {args.model_file}") if args.fp16: model.half() model.to(device) if is_distributed: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer param_optimizer = list(model.named_parameters()) # hack to remove pooler, which is not used # thus it produce None grad that break apex param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] t_total = num_train_steps if args.do_train and local_rank != -1: t_total = t_total // get_world_size() if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=t_total) global_step = 0 if args.do_train: if (not is_distributed or torch.distributed.get_rank() == 0): run.log('lr', np.float(args.learning_rate)) cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}'.format( list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length)) train_features = None try: with open(cached_train_features_file, "rb") as reader: train_features = pickle.load(reader) except: train_features = convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=True) if local_rank == -1 or torch.distributed.get_rank() == 0: logger.info(" Saving train features into cached file %s", cached_train_features_file) with open(cached_train_features_file, "wb") as writer: pickle.dump(train_features, writer) logger.info("***** Running training *****") logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_steps) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_start_positions = torch.tensor( [f.start_position for f in train_features], dtype=torch.long) all_end_positions = torch.tensor( [f.end_position for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions) if local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration", smoothing=0)): if n_gpu == 1: batch = tuple( t.to(device) for t in batch) # multi-gpu does scattering it-self input_ids, input_mask, segment_ids, start_positions, end_positions = batch loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: optimizer.backward(loss) else: loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: # modify learning rate with special warm up BERT uses lr_this_step = args.learning_rate * warmup_linear( global_step / t_total, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 # Save a trained model #model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self #output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") #if args.do_train: # torch.save(model_to_save.state_dict(), output_model_file) # Load a trained model that you have fine-tuned #model_state_dict = torch.load(output_model_file) #model = BertForQuestionAnswering.from_pretrained(args.bert_model, state_dict=model_state_dict) #model.to(device) if args.do_predict and (local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = read_squad_examples(input_file=args.predict_file, is_training=False) eval_features = convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=False) logger.info("***** Running predictions *****") logger.info(" Num orig examples = %d", len(eval_examples)) logger.info(" Num split examples = %d", len(eval_features)) logger.info(" Batch size = %d", args.predict_batch_size) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) model.eval() all_results = [] logger.info("Start evaluating") for input_ids, input_mask, segment_ids, example_indices in tqdm( eval_dataloader, desc="Evaluating"): if len(all_results) % 1000 == 0: logger.info("Processing example: %d" % (len(all_results))) input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) with torch.no_grad(): batch_start_logits, batch_end_logits = model( input_ids, segment_ids, input_mask) for i, example_index in enumerate(example_indices): start_logits = batch_start_logits[i].detach().cpu().tolist() end_logits = batch_end_logits[i].detach().cpu().tolist() eval_feature = eval_features[example_index.item()] unique_id = int(eval_feature.unique_id) all_results.append( RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) output_prediction_file = os.path.join(args.output_dir, "predictions.json") output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json") write_predictions(eval_examples, eval_features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, args.verbose_logging) with open(args.predict_file) as predict_file: dataset_json = json.load(predict_file) dataset = dataset_json['data'] with open(output_prediction_file) as prediction_file: predictions = json.load(prediction_file) result = evaluate(dataset, predictions) for key in result.keys(): logger.info(" %s = %s", key, str(result[key])) run.log(key, result[key])