def filter_words(target, source, env): """ Takes a coherent language model, pronunciation file and vocabulary file, and a second vocabulary file, and returns a coherent language model, pronunciation file and vocabulary file limited to the words in the second vocabulary file. The language model probabilities are scaled such that unigrams sum to one. *** """ with meta_open(source[0].rstr()) as voc_fd, meta_open(source[1].rstr()) as pron_fd, meta_open(source[2].rstr()) as lm_fd, meta_open(source[3].rstr()) as lim_fd: lm = Arpabo(lm_fd) pron = Pronunciations(pron_fd) voc = Vocabulary(voc_fd) lim = Vocabulary(lim_fd) logging.info("Original vocabulary: %s", voc) logging.info("Original pronunciations: %s", pron) logging.info("Original LM: %s", lm) logging.info("Limiting vocabulary: %s", lim) logging.info("Vocabulary to remove has mass: %s", lm.get_probability_of_not_words(lim.get_words())) logging.info("Vocabulary to remain has mass: %s", lm.get_probability_of_words(lim.get_words())) lm.filter_by(lim) pron.filter_by(lim) voc.filter_by(lim) logging.info("New vocabulary: %s", voc) logging.info("New pronunciations: %s", pron) logging.info("New LM: %s", lm) with meta_open(target[0].rstr(), "w") as voc_ofd, meta_open(target[1].rstr(), "w") as pron_ofd, meta_open(target[2].rstr(), "w") as lm_ofd: voc_ofd.write(voc.format()) pron_ofd.write(pron.format()) lm_ofd.write(lm.format()) return None
def augment_language_model(target, source, env): """ Input: old language model, old pronunciations, new pronunciations| ** old language model, old pronunciations, new pronunciations Output: new language model, new vocab, new pronunciations """ #from arpabo import Arpabo, Pronunciations weighted = len(source) == 5 old_prons = Pronunciations(meta_open(source[0].rstr())) old_lm = Arpabo(meta_open(source[1].rstr())) new_prons = Pronunciations(meta_open(source[2].rstr())) mass = source[-1].read() logging.info("Old LM: %s", old_lm) logging.info("Old Pronunciations: %s", old_prons) logging.info("Words to add: %s", new_prons) if weighted: new_probs = ProbabilityList(meta_open(source[3].rstr())) logging.info("Words to add (probabilities): %s", new_probs) old_prons.add_entries(new_prons) if weighted: old_lm.add_unigrams_with_probs(new_probs, mass) else: old_lm.add_unigrams(new_prons.get_words(), mass) logging.info("New Pronunciations: %s", old_prons) logging.info("New LM: %s", old_lm) logging.info("New words have weight %s", old_lm.get_probability_of_words(new_prons.get_words())) logging.info("Old words have weight %s", old_lm.get_probability_of_not_words(new_prons.get_words())) with meta_open(target[0].rstr(), "w") as new_vocab, meta_open(target[1].rstr(), "w") as new_prons, meta_open(target[2].rstr(), "w") as new_lm: new_lm.write(old_lm.format()) new_vocab.write(old_prons.format_vocabulary()) new_prons.write(old_prons.format()) return None