Пример #1
0
def generate_demos_cluster():
    demos_per_job = args.episodes // args.jobs
    demos_path = utils.get_demos_path(args.demos, args.env, 'agent')
    job_demo_names = [
        os.path.realpath(demos_path + '.shard{}'.format(i))
        for i in range(args.jobs)
    ]
    for demo_name in job_demo_names:
        job_demos_path = utils.get_demos_path(demo_name)
        if os.path.exists(job_demos_path):
            os.remove(job_demos_path)

    processes = []

    command = [args.job_script]
    command += sys.argv[1:]
    for i in range(args.jobs):
        cmd_i = list(
            map(
                str, command + ['--seed', args.seed + i] +
                ['--demos', job_demo_names[i]] +
                ['--episodes', demos_per_job] + ['--jobs', 0] +
                ['--valid-episodes', 0]))
        logger.info('LAUNCH COMMAND')
        logger.info(cmd_i)

        process = subprocess.Popen(cmd_i)
        processes += [process]

    for p in processes:
        p.wait()

    job_demos = [None] * args.jobs
    while True:
        jobs_done = 0
        for i in range(args.jobs):
            if job_demos[i] is None or len(job_demos[i]) < demos_per_job:
                try:
                    logger.info("Trying to load shard {}".format(i))
                    job_demos[i] = utils.load_demos(
                        utils.get_demos_path(job_demo_names[i]))
                    logger.info("{} demos ready in shard {}".format(
                        len(job_demos[i]), i))
                except Exception:
                    logger.exception("Failed to load the shard")
            if job_demos[i] and len(job_demos[i]) == demos_per_job:
                jobs_done += 1
        logger.info("{} out of {} shards done".format(jobs_done, args.jobs))
        if jobs_done == args.jobs:
            break
        logger.info("sleep for 60 seconds")
        time.sleep(60)

    # Training demos
    all_demos = []
    for demos in job_demos:
        all_demos.extend(demos)
    utils.save_demos(all_demos, demos_path)
Пример #2
0
    def __init__(self, env):
        super().__init__()
        self.initUI()

        # By default, manual stepping only
        self.fpsLimit = 0

        self.env = env
        self.lastObs = None

        # Demonstrations
        self.demos = utils.load_demos(args.env, "human")
        utils.synthesize_demos(self.demos)
        self.current_demo = []

        self.shift = len(self.demos) if args.shift is None else args.shift

        self.shiftEnv()

        # Pointing and naming data
        self.pointingData = []
Пример #3
0
    def __init__(self, env):
        super().__init__()
        self.initUI()

        # By default, manual stepping only
        self.fpsLimit = 0

        self.env = env
        self.lastObs = None

        # Demonstrations
        self.demos_path = utils.get_demos_path(args.demos,
                                               args.env,
                                               origin="human",
                                               valid=False)
        self.demos = utils.load_demos(self.demos_path, raise_not_found=False)
        utils.synthesize_demos(self.demos)

        self.shift = len(self.demos) if args.shift is None else args.shift

        self.shiftEnv()

        # Pointing and naming data
        self.pointingData = []
Пример #4
0
    def __init__(
        self,
        args,
    ):
        self.args = args

        utils.seed(self.args.seed)

        # args.env is a list when training on multiple environments
        if getattr(args, 'multi_env', None):
            self.env = [gym.make(item) for item in args.multi_env]

            self.train_demos = []
            for demos, episodes in zip(args.multi_demos, args.multi_episodes):
                demos_path = utils.get_demos_path(demos,
                                                  None,
                                                  None,
                                                  valid=False)
                logger.info('loading {} of {} demos'.format(episodes, demos))
                train_demos = utils.load_demos(demos_path)
                logger.info('loaded demos')
                if episodes > len(train_demos):
                    raise ValueError(
                        "there are only {} train demos in {}".format(
                            len(train_demos), demos))
                self.train_demos.extend(train_demos[:episodes])
                logger.info('So far, {} demos loaded'.format(
                    len(self.train_demos)))

            self.val_demos = []
            for demos, episodes in zip(args.multi_demos, [args.val_episodes] *
                                       len(args.multi_demos)):
                demos_path_valid = utils.get_demos_path(demos,
                                                        None,
                                                        None,
                                                        valid=True)
                logger.info('loading {} of {} valid demos'.format(
                    episodes, demos))
                valid_demos = utils.load_demos(demos_path_valid)
                logger.info('loaded demos')
                if episodes > len(valid_demos):
                    logger.info(
                        'Using all the available {} demos to evaluate valid. accuracy'
                        .format(len(valid_demos)))
                self.val_demos.extend(valid_demos[:episodes])
                logger.info('So far, {} valid demos loaded'.format(
                    len(self.val_demos)))

            logger.info('Loaded all demos')

            observation_space = self.env[0].observation_space
            action_space = self.env[0].action_space

        else:
            self.env = gym.make(self.args.env)

            demos_path = utils.get_demos_path(args.demos,
                                              args.env,
                                              args.demos_origin,
                                              valid=False)
            demos_path_valid = utils.get_demos_path(args.demos,
                                                    args.env,
                                                    args.demos_origin,
                                                    valid=True)
            print("else")
            logger.info('loading demos')
            self.train_demos = utils.load_demos(demos_path)
            print(len(self.train_demos))
            print(self.train_demos[0])
            logger.info('loaded demos')
            if args.episodes:
                if args.episodes > len(self.train_demos):
                    raise ValueError("there are only {} train demos".format(
                        len(self.train_demos)))
                self.train_demos = self.train_demos[:args.episodes]

            self.val_demos = utils.load_demos(demos_path_valid)
            if args.val_episodes > len(self.val_demos):
                logger.info(
                    'Using all the available {} demos to evaluate valid. accuracy'
                    .format(len(self.val_demos)))
            self.val_demos = self.val_demos[:self.args.val_episodes]

            observation_space = self.env.observation_space
            action_space = self.env.action_space

            print("else")
        print(args.model)
        self.obss_preprocessor = utils.ObssPreprocessor(
            args.model, observation_space,
            getattr(self.args, 'pretrained_model', None))

        # Define actor-critic model
        self.acmodel = utils.load_model(args.model, raise_not_found=False)
        if self.acmodel is None:
            if getattr(self.args, 'pretrained_model', None):
                self.acmodel = utils.load_model(args.pretrained_model,
                                                raise_not_found=True)
            else:
                self.acmodel = ACModel(self.obss_preprocessor.obs_space,
                                       action_space, args.image_dim,
                                       args.memory_dim, args.instr_dim,
                                       not self.args.no_instr,
                                       self.args.instr_arch,
                                       not self.args.no_mem, self.args.arch)
        self.obss_preprocessor.vocab.save()
        utils.save_model(self.acmodel, args.model)

        self.acmodel.train()
        if torch.cuda.is_available():
            self.acmodel.cuda()

        self.optimizer = torch.optim.Adam(self.acmodel.parameters(),
                                          self.args.lr,
                                          eps=self.args.optim_eps)
        self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer,
                                                         step_size=100,
                                                         gamma=0.9)

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
Пример #5
0
    def __init__(self, args):
        """

        :param args:
        """
        super(MetaLearner, self).__init__()

        self.update_lr = args.update_lr
        self.meta_lr = args.meta_lr
        self.task_num = args.task_num
        self.args = args

        utils.seed(self.args.seed)

        self.env = gym.make(self.args.env)

        demos_path = utils.get_demos_path(args.demos,
                                          args.env,
                                          args.demos_origin,
                                          valid=False)
        demos_path_valid = utils.get_demos_path(args.demos,
                                                args.env,
                                                args.demos_origin,
                                                valid=True)

        logger.info('loading demos')
        self.train_demos = utils.load_demos(demos_path)
        logger.info('loaded demos')
        # if args.episodes:
        #     if args.episodes > len(self.train_demos):
        #         raise ValueError("there are only {} train demos".format(len(self.train_demos)))
        # self.train_demos = self.train_demos[:args.episodes]

        self.val_demos = utils.load_demos(demos_path_valid)
        # if args.val_episodes > len(self.val_demos):
        #     logger.info('Using all the available {} demos to evaluate valid. accuracy'.format(len(self.val_demos)))
        self.val_demos = self.val_demos[:self.args.val_episodes]

        observation_space = self.env.observation_space
        action_space = self.env.action_space

        print(args.model)
        self.obss_preprocessor = utils.ObssPreprocessor(
            args.model, observation_space,
            getattr(self.args, 'pretrained_model', None))

        # Define actor-critic model
        # self.net = utils.load_model(args.model, raise_not_found=False)
        # if self.net is None:
        #     if getattr(self.args, 'pretrained_model', None):
        #         self.net = utils.load_model(args.pretrained_model, raise_not_found=True)
        #     else:
        self.net = ACModel(self.obss_preprocessor.obs_space, action_space,
                           args.image_dim, args.memory_dim, args.instr_dim,
                           not self.args.no_instr, self.args.instr_arch,
                           not self.args.no_mem, self.args.arch)
        self.obss_preprocessor.vocab.save()
        # utils.save_model(self.net, args.model)
        self.fast_net = copy.deepcopy(self.net)
        self.net.train()
        self.fast_net.train()

        if torch.cuda.is_available():
            self.net.cuda()
            self.fast_net.cuda()

        self.optimizer = torch.optim.SGD(self.fast_net.parameters(),
                                         lr=self.args.update_lr)
        # self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=100, gamma=0.9)

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.meta_optim = optim.Adam(self.net.parameters(), lr=self.meta_lr)
# Set seed for all randomness sources

utils.seed(args.seed)

# Generate environment

env = gym.make(args.env)
env.seed(args.seed)

# Define agent

agent = utils.load_agent(args, env)

# Load demonstrations

demos = utils.load_demos(args.env, "agent")
utils.synthesize_demos(demos)

for i in range(1, args.episodes+1):
    # Run the expert for one episode

    done = False
    obs = env.reset()
    demo = []

    while not(done):
        action = agent.get_action(obs)
        new_obs, reward, done, _ = env.step(action)
        agent.analyze_feedback(reward, done)

        demo.append((obs, action, reward, done))
Пример #7
0
                ['--episodes', demos_per_job] + ['--jobs', 0] +
                ['--valid-episodes', 0] + ['--sbatch-args=']))
        logger.info('SBATCH COMMAND')
        logger.info(cmd_i)
        output = subprocess.check_output(cmd_i)
        logger.info('SBATCH OUTPUT')
        logger.info(output.decode('utf-8'))

    job_demos = [None] * args.jobs
    while True:
        jobs_done = 0
        for i in range(args.jobs):
            if job_demos[i] is None or len(job_demos[i]) < demos_per_job:
                try:
                    logger.info("Trying to load shard {}".format(i))
                    job_demos[i] = utils.load_demos(
                        utils.get_demos_path(job_demo_names[i]))
                    logger.info("{} demos ready in shard {}".format(
                        len(job_demos[i]), i))
                except Exception:
                    logger.exception("Failed to load the shard")
            if job_demos[i] and len(job_demos[i]) == demos_per_job:
                jobs_done += 1
        logger.info("{} out of {} shards done".format(jobs_done, args.jobs))
        if jobs_done == args.jobs:
            break
        logger.info("sleep for 60 seconds")
        time.sleep(60)

    # Training demos
    all_demos = []
    for demos in job_demos: