Пример #1
0
    def _assemble_and_solve_adj_eq(self, dFdu_adj_form, dJdu, compute_bdy):
        dJdu_copy = dJdu.copy()
        bcs = self._homogenize_bcs()

        solver = self.block_helper.adjoint_solver
        if solver is None:
            if self.assemble_system:
                rhs_bcs_form = backend.inner(
                    backend.Function(self.function_space),
                    dFdu_adj_form.arguments()[0]) * backend.dx
                A, _ = backend.assemble_system(dFdu_adj_form, rhs_bcs_form,
                                               bcs)
            else:
                A = compat.assemble_adjoint_value(dFdu_adj_form)
                [bc.apply(A) for bc in bcs]

            solver = backend.LUSolver(A, self.method)
            self.block_helper.adjoint_solver = solver

        solver.parameters.update(self.lu_solver_parameters)
        [bc.apply(dJdu) for bc in bcs]

        adj_sol = backend.Function(self.function_space)
        solver.solve(adj_sol.vector(), dJdu)

        adj_sol_bdy = None
        if compute_bdy:
            adj_sol_bdy = compat.function_from_vector(
                self.function_space, dJdu_copy - compat.assemble_adjoint_value(
                    backend.action(dFdu_adj_form, adj_sol)))

        return adj_sol, adj_sol_bdy
Пример #2
0
    def _assemble_and_solve_adj_eq(self,
                                   dFdu_adj_form,
                                   dJdu,
                                   compute_bdy=True):
        dJdu_copy = dJdu.copy()
        dFdu = compat.assemble_adjoint_value(dFdu_adj_form,
                                             **self.assemble_kwargs)
        bcs = self._homogenize_bcs()

        # Apply boundary conditions on adj_dFdu and dJdu.
        for bc in bcs:
            bc.apply(dFdu, dJdu)

        adj_sol = compat.create_function(self.function_space)
        lu_solver_methods = backend.lu_solver_methods()
        solver_method = self.adj_args[0] if len(
            self.adj_args) >= 1 else "default"
        solver_method = "default" if solver_method == "lu" else solver_method

        if solver_method in lu_solver_methods:
            solver = backend.LUSolver(solver_method)
            solver_parameters = self.adj_kwargs.get("lu_solver", {})
        else:
            solver = backend.KrylovSolver(*self.adj_args)
            solver_parameters = self.adj_kwargs.get("krylov_solver", {})
        solver.parameters.update(solver_parameters)
        solver.solve(dFdu, adj_sol.vector(), dJdu)

        adj_sol_bdy = None
        if compute_bdy:
            adj_sol_bdy = compat.function_from_vector(
                self.function_space, dJdu_copy - compat.assemble_adjoint_value(
                    backend.action(dFdu_adj_form, adj_sol)))

        return adj_sol, adj_sol_bdy
Пример #3
0
    def derivative_action(self, dependencies, values, variable,
                          contraction_vector, hermitian):
        idx = dependencies.index(variable)

        # If you want to apply boundary conditions symmetrically in the adjoint
        # -- and you often do --
        # then we need to have a UFL representation of all the terms in the adjoint equation.
        # However!
        # Since UFL cannot represent the identity map,
        # we need to find an f such that when
        # assemble(inner(f, v)*dx)
        # we get the contraction_vector.data back.
        # This involves inverting a mass matrix.

        if backend.parameters["adjoint"][
                "symmetric_bcs"] and backend.__version__ <= '1.2.0':
            backend.info_red(
                "Warning: symmetric BC application requested but unavailable in dolfin <= 1.2.0."
            )

        if backend.parameters["adjoint"][
                "symmetric_bcs"] and backend.__version__ > '1.2.0':

            V = contraction_vector.data.function_space()
            v = backend.TestFunction(V)

            if str(V) not in adjglobals.fsp_lu:
                u = backend.TrialFunction(V)
                A = backend.assemble(backend.inner(u, v) * backend.dx)
                solver = "mumps" if "mumps" in backend.lu_solver_methods(
                ).keys() else "default"
                lusolver = backend.LUSolver(A, solver)
                lusolver.parameters["symmetric"] = True
                lusolver.parameters["reuse_factorization"] = True
                adjglobals.fsp_lu[str(V)] = lusolver
            else:
                lusolver = adjglobals.fsp_lu[str(V)]

            riesz = backend.Function(V)
            lusolver.solve(
                riesz.vector(),
                self.weights[idx] * contraction_vector.data.vector())
            out = (backend.inner(riesz, v) * backend.dx)
        else:
            out = backend.Function(self.fn_space)
            out.assign(self.weights[idx] * contraction_vector.data)

        return adjlinalg.Vector(out)
Пример #4
0
    def _forward_solve(self, lhs, rhs, func, bcs, **kwargs):
        solver = self.block_helper.forward_solver
        if solver is None:
            if self.assemble_system:
                A, _ = backend.assemble_system(lhs, rhs, bcs)
            else:
                A = compat.assemble_adjoint_value(lhs)
                [bc.apply(A) for bc in bcs]

            solver = backend.LUSolver(A, self.method)
            self.block_helper.forward_solver = solver

        if self.assemble_system:
            system_assembler = backend.SystemAssembler(lhs, rhs, bcs)
            b = backend.Function(self.function_space).vector()
            system_assembler.assemble(b)
        else:
            b = compat.assemble_adjoint_value(rhs)
            [bc.apply(b) for bc in bcs]

        solver.parameters.update(self.lu_solver_parameters)
        solver.solve(func.vector(), b)
        return func