Пример #1
0
def test_basic():
    num_layers = 2
    g = generate_rand_graph(100, connect_more=True)
    nf = create_full_nodeflow(g, num_layers)
    assert nf.number_of_nodes() == g.number_of_nodes() * (num_layers + 1)
    assert nf.number_of_edges() == g.number_of_edges() * num_layers
    assert nf.num_layers == num_layers + 1
    assert nf.layer_size(0) == g.number_of_nodes()
    assert nf.layer_size(1) == g.number_of_nodes()
    check_basic(g, nf)

    parent_nids = F.arange(0, g.number_of_nodes())
    nids = nf.map_from_parent_nid(0, parent_nids)
    assert F.array_equal(nids, parent_nids)

    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    check_basic(g, nf)
Пример #2
0
    def _test2():  # k > #neighbors
        subg = dgl.sampling.select_topk(g,
                                        -1,
                                        'weight', [0, 2],
                                        edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        u, v = subg.edges()
        u_ans, v_ans = subg.out_edges([0, 2])
        uv = set(zip(F.asnumpy(u), F.asnumpy(v)))
        uv_ans = set(zip(F.asnumpy(u_ans), F.asnumpy(v_ans)))
        assert uv == uv_ans

        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2], edge_dir='out')
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0, 2), (0, 1), (2, 0)}
Пример #3
0
def test_basic():
    num_layers = 2
    g = generate_rand_graph(100, connect_more=True)
    nf = create_full_node_flow(g, num_layers)
    assert nf.number_of_nodes() == g.number_of_nodes() * (num_layers + 1)
    assert nf.number_of_edges() == g.number_of_edges() * num_layers
    assert nf.num_layers == num_layers + 1
    assert nf.layer_size(0) == g.number_of_nodes()
    assert nf.layer_size(1) == g.number_of_nodes()
    check_basic(g, nf)

    parent_nids = F.arange(0, g.number_of_nodes())
    nids = dgl.graph_index.map_to_nodeflow_nid(nf._graph, 0,
                                               utils.toindex(parent_nids)).tousertensor()
    assert F.array_equal(nids, parent_nids)

    g = generate_rand_graph(100)
    nf = create_mini_batch(g, num_layers)
    assert nf.num_layers == num_layers + 1
    check_basic(g, nf)
Пример #4
0
def test_append2():
    # test append on FrameRef
    data = Frame(create_test_data())
    f = FrameRef(data)
    assert f.is_contiguous()
    assert f.is_span_whole_column()
    assert f.num_rows == N
    # append on the underlying frame should not reflect on the ref
    data.append(data)
    assert f.is_contiguous()
    assert not f.is_span_whole_column()
    assert f.num_rows == N
    # append on the FrameRef should work
    f.append(data)
    assert not f.is_contiguous()
    assert not f.is_span_whole_column()
    assert f.num_rows == 3 * N
    new_idx = list(range(N)) + list(range(2*N, 4*N))
    assert F.array_equal(f._index.tousertensor(), F.copy_to(F.tensor(new_idx, dtype=F.int64), F.cpu()))
    assert data.num_rows == 4 * N
Пример #5
0
 def _check_subgraph(g, sg):
     assert sg.ntypes == ['user', 'game', 'developer']
     assert sg.etypes == ['follows', 'plays', 'wishes', 'develops']
     assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                          F.tensor([1, 2], F.int64))
     assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                          F.tensor([0], F.int64))
     assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                          F.tensor([1], F.int64))
     assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                          F.tensor([1], F.int64))
     assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                          F.tensor([1], F.int64))
     assert sg.number_of_nodes('developer') == 0
     assert sg.number_of_edges('develops') == 0
     assert F.array_equal(sg.nodes['user'].data['h'],
                          g.nodes['user'].data['h'][1:3])
     assert F.array_equal(sg.edges['follows'].data['h'],
                          g.edges['follows'].data['h'][1:2])
Пример #6
0
 def _check_typed_subgraph1(g, sg):
     assert set(sg.ntypes) == {'user', 'game'}
     assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
     for ntype in sg.ntypes:
         assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
     for etype in sg.etypes:
         src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
         src_g, dst_g = g.all_edges(etype=etype, order='eid')
         assert F.array_equal(src_sg, src_g)
         assert F.array_equal(dst_sg, dst_g)
     assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
     assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
     g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
     g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
     assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
     assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
Пример #7
0
def test_graph_conv2(g, norm, weight, bias):
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    conv.initialize(ctx=F.ctx())
    ext_w = F.randn((5, 2)).as_in_context(F.ctx())
    nsrc = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_src_nodes()
    ndst = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).as_in_context(F.ctx())
    h_dst = F.randn((ndst, 2)).as_in_context(F.ctx())
    if weight:
        h_out = conv(g, h)
    else:
        h_out = conv(g, h, ext_w)
    assert h_out.shape == (ndst, 2)

    if not isinstance(g, dgl.DGLGraph) and len(g.ntypes) == 2:
        # bipartite, should also accept pair of tensors
        if weight:
            h_out2 = conv(g, (h, h_dst))
        else:
            h_out2 = conv(g, (h, h_dst), ext_w)
        assert h_out2.shape == (ndst, 2)
        assert F.array_equal(h_out, h_out2)
Пример #8
0
def test_chainjacobian(backendopt):

    for datatype in backendopt:
        T.set_backend(datatype)

        x1 = ad.Variable(name="x1", shape=[2, 2, 2])
        x2 = ad.Variable(name="x2", shape=[2, 2, 2])
        x1.set_in_indices_length(1)
        x2.set_in_indices_length(2)

        y = ad.chainjacobian(x1, x2)

        executor = ad.Executor([y])

        x1_val = T.tensor([[[1, 1], [1, 1]], [[1, 1], [1, 1]]])
        x2_val = T.tensor([[[1, 1], [1, 1]], [[1, 1], [1, 1]]])
        y_val, = executor.run(feed_dict={x1: x1_val, x2: x2_val})

        expected_y_val = T.einsum("abc,bcd->ad", x1_val, x2_val)

        assert isinstance(y, ad.Node)
        assert T.array_equal(y_val, expected_y_val)
Пример #9
0
 def _check_subgraph(g, sg):
     assert sg.idtype == g.idtype
     assert sg.device == g.device
     assert sg.ntypes == g.ntypes
     assert sg.etypes == g.etypes
     assert sg.canonical_etypes == g.canonical_etypes
     assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                          F.tensor([1, 2], g.idtype))
     assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                          F.tensor([0], g.idtype))
     assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                          F.tensor([1], g.idtype))
     assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                          F.tensor([1], g.idtype))
     assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                          F.tensor([1], g.idtype))
     assert sg.number_of_nodes('developer') == 0
     assert sg.number_of_edges('develops') == 0
     assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
     assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])
Пример #10
0
def _test_DGLCSVDataset_multiple():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes*num_graphs, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges*num_graphs, num_dims)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        feat_gdata = np.random.rand(num_graphs, num_dims)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'feat': [line.tolist() for line in feat_gdata],
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

        # load CSVDataset with default node/edge/graph_data_parser
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
            csv_dataset = data.DGLCSVDataset(
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == num_graphs
            assert csv_dataset.has_cache()
            assert len(csv_dataset.data) == 2
            assert 'feat' in csv_dataset.data
            assert 'label' in csv_dataset.data
            assert F.array_equal(F.tensor(feat_gdata),
                                 csv_dataset.data['feat'])
            for i, (g, label) in enumerate(csv_dataset):
                assert not g.is_homogeneous
                assert F.asnumpy(label) == label_gdata[i]
                for ntype in g.ntypes:
                    assert g.num_nodes(ntype) == num_nodes
                    assert F.array_equal(F.tensor(feat_ndata[i*num_nodes:(i+1)*num_nodes]),
                                         g.nodes[ntype].data['feat'])
                    assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes],
                                          F.asnumpy(g.nodes[ntype].data['label']))
                for etype in g.etypes:
                    assert g.num_edges(etype) == num_edges
                    assert F.array_equal(F.tensor(feat_edata[i*num_edges:(i+1)*num_edges]),
                                         g.edges[etype].data['feat'])
                    assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges],
                                          F.asnumpy(g.edges[etype].data['label']))
Пример #11
0
def test_convert():
    hg = create_test_heterograph()
    hs = []
    for ntype in hg.ntypes:
        h = F.randn((hg.number_of_nodes(ntype), 5))
        hg.nodes[ntype].data['h'] = h
        hs.append(h)
    hg.nodes['user'].data['x'] = F.randn((3, 3))
    ws = []
    for etype in hg.canonical_etypes:
        w = F.randn((hg.number_of_edges(etype), 5))
        hg.edges[etype].data['w'] = w
        ws.append(w)
    hg.edges['plays'].data['x'] = F.randn((4, 3))

    g = dgl.to_homo(hg)
    assert F.array_equal(F.cat(hs, dim=0), g.ndata['h'])
    assert 'x' not in g.ndata
    assert F.array_equal(F.cat(ws, dim=0), g.edata['w'])
    assert 'x' not in g.edata

    src, dst = g.all_edges(order='eid')
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    etype_id, eid = F.asnumpy(g.edata[dgl.ETYPE]), F.asnumpy(g.edata[dgl.EID])
    ntype_id, nid = F.asnumpy(g.ndata[dgl.NTYPE]), F.asnumpy(g.ndata[dgl.NID])
    for i in range(g.number_of_edges()):
        srctype = hg.ntypes[ntype_id[src[i]]]
        dsttype = hg.ntypes[ntype_id[dst[i]]]
        etype = hg.etypes[etype_id[i]]
        src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
        assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
        assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]

    mg = nx.MultiDiGraph([('user', 'user', 'follows'),
                          ('user', 'game', 'plays'),
                          ('user', 'game', 'wishes'),
                          ('developer', 'game', 'develops')])

    for _mg in [None, mg]:
        hg2 = dgl.to_hetero(g, ['user', 'game', 'developer'],
                            ['follows', 'plays', 'wishes', 'develops'],
                            ntype_field=dgl.NTYPE,
                            etype_field=dgl.ETYPE,
                            metagraph=_mg)
        assert set(hg.ntypes) == set(hg2.ntypes)
        assert set(hg.canonical_etypes) == set(hg2.canonical_etypes)
        for ntype in hg.ntypes:
            assert hg.number_of_nodes(ntype) == hg2.number_of_nodes(ntype)
            assert F.array_equal(hg.nodes[ntype].data['h'],
                                 hg2.nodes[ntype].data['h'])
        for canonical_etype in hg.canonical_etypes:
            src, dst = hg.all_edges(etype=canonical_etype, order='eid')
            src2, dst2 = hg2.all_edges(etype=canonical_etype, order='eid')
            assert F.array_equal(src, src2)
            assert F.array_equal(dst, dst2)
            assert F.array_equal(hg.edges[canonical_etype].data['w'],
                                 hg2.edges[canonical_etype].data['w'])

    # hetero_from_homo test case 2
    g = dgl.graph([(0, 2), (1, 2), (2, 3), (0, 3)])
    g.ndata[dgl.NTYPE] = F.tensor([0, 0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0, 1, 2])
    hg = dgl.to_hetero(g, ['l0', 'l1', 'l2'], ['e0', 'e1', 'e2'])
    assert set(hg.canonical_etypes) == set([('l0', 'e0', 'l1'),
                                            ('l1', 'e1', 'l2'),
                                            ('l0', 'e2', 'l2')])
    assert hg.number_of_nodes('l0') == 2
    assert hg.number_of_nodes('l1') == 1
    assert hg.number_of_nodes('l2') == 1
    assert hg.number_of_edges('e0') == 2
    assert hg.number_of_edges('e1') == 1
    assert hg.number_of_edges('e2') == 1

    # hetero_from_homo test case 3
    mg = nx.MultiDiGraph([('user', 'movie', 'watches'),
                          ('user', 'TV', 'watches')])
    g = dgl.graph([(0, 1), (0, 2)])
    g.ndata[dgl.NTYPE] = F.tensor([0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0])
    for _mg in [None, mg]:
        hg = dgl.to_hetero(g, ['user', 'TV', 'movie'], ['watches'],
                           metagraph=_mg)
        assert set(hg.canonical_etypes) == set([('user', 'watches', 'movie'),
                                                ('user', 'watches', 'TV')])
        assert hg.number_of_nodes('user') == 1
        assert hg.number_of_nodes('TV') == 1
        assert hg.number_of_nodes('movie') == 1
        assert hg.number_of_edges(('user', 'watches', 'TV')) == 1
        assert hg.number_of_edges(('user', 'watches', 'movie')) == 1
        assert len(hg.etypes) == 2

    # hetero_to_homo test case 2
    hg = dgl.bipartite([(0, 0), (1, 1)], card=(2, 3))
    g = dgl.to_homo(hg)
    assert g.number_of_nodes() == 5
Пример #12
0
def test_to_block(index_dtype):
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID])

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
            if dst_nodes is not None and ntype in dst_nodes:
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
            else:
                check(g, bg, ntype, etype, None, include_dst_in_src)

    g = dgl.heterograph({
        ('A', 'AA', 'A'): [(0, 1), (2, 3), (1, 2), (3, 4)],
        ('A', 'AB', 'B'): [(0, 1), (1, 3), (3, 5), (1, 6)],
        ('B', 'BA', 'A'): [(2, 3), (3, 2)]}, index_dtype=index_dtype)
    g_a = g['AA']

    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, 'A', 'AA', None, False)
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4

    dst_nodes = F.tensor([4, 3, 2, 1], dtype=getattr(F, index_dtype))
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
    assert bg._idtype_str == index_dtype
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g_ab, bg, None)

    dst_nodes = {'B': F.tensor([5, 6, 3, 1], dtype=getattr(F, index_dtype))}
    bg = dgl.to_block(g, dst_nodes)
    assert bg.number_of_nodes('SRC/B') == 4
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID], bg.dstnodes['B'].data[dgl.NID])
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)

    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=getattr(F, index_dtype)), 'B': F.tensor([3, 5, 6, 1], dtype=getattr(F, index_dtype))}
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
Пример #13
0
def test_to_bidirected():
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    bg = dgl.to_bidirected(g, copy_ndata=True, copy_edata=True)
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0), bg.edata['h'])
    bg.ndata['hh'] = F.tensor([[0.], [1.], [2.], [1.]])
    assert ('hh' in g.ndata) is False
    bg.edata['hh'] = F.tensor([[0.], [1.], [2.], [1.], [0.], [1.], [2.], [1.]])
    assert ('hh' in g.edata) is False

    # donot share ndata and edata
    bg = dgl.to_bidirected(g, copy_ndata=False, copy_edata=False)
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert ('h' in bg.ndata) is False
    assert ('h' in bg.edata) is False

    # zero edge graph
    g = dgl.graph([])
    bg = dgl.to_bidirected(g, copy_ndata=True, copy_edata=True)

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'wins', 'user'): (F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))
    })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((3, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.to_bidirected(g, copy_ndata=True, copy_edata=True, ignore_bipartite=True)
    assert F.array_equal(g.nodes['game'].data['hv'], bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'], bg.nodes['user'].data['hv'])
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
                         bg.edges['wins'].data['h'])
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0

    # donot share ndata and edata
    bg = dgl.to_bidirected(g, copy_ndata=False, copy_edata=False, ignore_bipartite=True)
    assert len(bg.edges['wins'].data) == 0
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0
    assert len(bg.nodes['game'].data) == 0
    assert len(bg.nodes['user'].data) == 0
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
Пример #14
0
def check_basics(g, ig):
    assert g.number_of_nodes() == ig.number_of_nodes()
    assert g.number_of_edges() == ig.number_of_edges()

    edges = g.edges("srcdst")
    iedges = ig.edges("srcdst")
    assert F.array_equal(edges[0].tousertensor(), iedges[0].tousertensor())
    assert F.array_equal(edges[1].tousertensor(), iedges[1].tousertensor())
    assert F.array_equal(edges[2].tousertensor(), iedges[2].tousertensor())

    edges = g.edges("eid")
    iedges = ig.edges("eid")
    assert F.array_equal(edges[0].tousertensor(), iedges[0].tousertensor())
    assert F.array_equal(edges[1].tousertensor(), iedges[1].tousertensor())
    assert F.array_equal(edges[2].tousertensor(), iedges[2].tousertensor())

    for i in range(g.number_of_nodes()):
        assert g.has_node(i) == ig.has_node(i)

    for i in range(g.number_of_nodes()):
        assert F.array_equal(
            g.predecessors(i).tousertensor(),
            ig.predecessors(i).tousertensor())
        assert F.array_equal(
            g.successors(i).tousertensor(),
            ig.successors(i).tousertensor())

    randv = np.random.randint(0, g.number_of_nodes(), 10)
    randv = utils.toindex(randv)
    in_src1, in_dst1, in_eids1 = sort_edges(g.in_edges(randv))
    in_src2, in_dst2, in_eids2 = sort_edges(ig.in_edges(randv))
    nnz = in_src2.shape[0]
    assert F.array_equal(in_src1, in_src2)
    assert F.array_equal(in_dst1, in_dst2)
    assert F.array_equal(in_eids1, in_eids2)

    out_src1, out_dst1, out_eids1 = sort_edges(g.out_edges(randv))
    out_src2, out_dst2, out_eids2 = sort_edges(ig.out_edges(randv))
    nnz = out_dst2.shape[0]
    assert F.array_equal(out_dst1, out_dst2)
    assert F.array_equal(out_src1, out_src2)
    assert F.array_equal(out_eids1, out_eids2)

    num_v = len(randv)
    assert F.array_equal(
        g.in_degrees(randv).tousertensor(),
        ig.in_degrees(randv).tousertensor())
    assert F.array_equal(
        g.out_degrees(randv).tousertensor(),
        ig.out_degrees(randv).tousertensor())
    randv = randv.tousertensor()
    for v in F.asnumpy(randv):
        assert g.in_degree(v) == ig.in_degree(v)
        assert g.out_degree(v) == ig.out_degree(v)

    for u in F.asnumpy(randv):
        for v in F.asnumpy(randv):
            if len(g.edge_id(u, v)) == 1:
                assert g.edge_id(u, v).tonumpy() == ig.edge_id(u, v).tonumpy()
            assert g.has_edge_between(u, v) == ig.has_edge_between(u, v)
    randv = utils.toindex(randv)
    ids = g.edge_ids(randv, randv)[2].tonumpy()
    assert sum(ig.edge_ids(randv, randv)[2].tonumpy() == ids, 0) == len(ids)
    assert sum(
        g.has_edges_between(randv, randv).tonumpy() == ig.has_edges_between(
            randv, randv).tonumpy(), 0) == len(randv)
Пример #15
0
def _check_neighbor_sampling_dataloader(g, nids, dl, mode, collator):
    seeds = defaultdict(list)

    for item in dl:
        if mode == 'node':
            input_nodes, output_nodes, blocks = item
        elif mode == 'edge':
            input_nodes, pair_graph, blocks = item
            output_nodes = pair_graph.ndata[dgl.NID]
        elif mode == 'link':
            input_nodes, pair_graph, neg_graph, blocks = item
            output_nodes = pair_graph.ndata[dgl.NID]
            for ntype in pair_graph.ntypes:
                assert F.array_equal(pair_graph.nodes[ntype].data[dgl.NID], neg_graph.nodes[ntype].data[dgl.NID])

        if len(g.ntypes) > 1:
            for ntype in g.ntypes:
                assert F.array_equal(input_nodes[ntype], blocks[0].srcnodes[ntype].data[dgl.NID])
                assert F.array_equal(output_nodes[ntype], blocks[-1].dstnodes[ntype].data[dgl.NID])
        else:
            assert F.array_equal(input_nodes, blocks[0].srcdata[dgl.NID])
            assert F.array_equal(output_nodes, blocks[-1].dstdata[dgl.NID])

        prev_dst = {ntype: None for ntype in g.ntypes}
        for block in blocks:
            for canonical_etype in block.canonical_etypes:
                utype, etype, vtype = canonical_etype
                uu, vv = block.all_edges(order='eid', etype=canonical_etype)
                src = block.srcnodes[utype].data[dgl.NID]
                dst = block.dstnodes[vtype].data[dgl.NID]
                assert F.array_equal(
                    block.srcnodes[utype].data['feat'], g.nodes[utype].data['feat'][src])
                assert F.array_equal(
                    block.dstnodes[vtype].data['feat'], g.nodes[vtype].data['feat'][dst])
                if prev_dst[utype] is not None:
                    assert F.array_equal(src, prev_dst[utype])
                u = src[uu]
                v = dst[vv]
                assert F.asnumpy(g.has_edges_between(u, v, etype=canonical_etype)).all()
                eid = block.edges[canonical_etype].data[dgl.EID]
                assert F.array_equal(
                    block.edges[canonical_etype].data['feat'],
                    g.edges[canonical_etype].data['feat'][eid])
                ufound, vfound = g.find_edges(eid, etype=canonical_etype)
                assert F.array_equal(ufound, u)
                assert F.array_equal(vfound, v)
            for ntype in block.dsttypes:
                src = block.srcnodes[ntype].data[dgl.NID]
                dst = block.dstnodes[ntype].data[dgl.NID]
                assert F.array_equal(src[:block.number_of_dst_nodes(ntype)], dst)
                prev_dst[ntype] = dst

        if mode == 'node':
            for ntype in blocks[-1].dsttypes:
                seeds[ntype].append(blocks[-1].dstnodes[ntype].data[dgl.NID])
        elif mode == 'edge' or mode == 'link':
            for etype in pair_graph.canonical_etypes:
                seeds[etype].append(pair_graph.edges[etype].data[dgl.EID])

    # Check if all nodes/edges are iterated
    seeds = {k: F.cat(v, 0) for k, v in seeds.items()}
    for k, v in seeds.items():
        if k in nids:
            seed_set = set(F.asnumpy(nids[k]))
        elif isinstance(k, tuple) and k[1] in nids:
            seed_set = set(F.asnumpy(nids[k[1]]))
        else:
            continue

        v_set = set(F.asnumpy(v))
        assert v_set == seed_set
Пример #16
0
def _assert_is_identical_index(i1, i2):
    assert i1.slice_data() == i2.slice_data()
    assert F.array_equal(i1.tousertensor(), i2.tousertensor())
Пример #17
0
def test_level1():
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
    g = create_test_heterograph()

    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}

    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}

    def mfunc(edges):
        return {'m': edges.src['h']}

    def afunc(nodes):
        return {'y': nodes.data['y'] + 1}

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send([2, 3], mfunc, etype='plays')
    g.recv([0, 1], rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    g.nodes['game'].data.pop('y')

    # only one type
    play_g = g['plays']
    play_g.send([2, 3], mfunc)
    play_g.recv([0, 1], rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    # TODO(minjie): following codes will fail because messages are
    #   not shared with the base graph. However, since send and recv
    #   are rarely used, no fix at the moment.
    # g['plays'].send([2, 3], mfunc)
    # g['plays'].recv([0, 1], mfunc)

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.send([2, 3], mfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        g.recv([0, 1], rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi recv
    g.send(g.edges(etype='plays'), mfunc, etype='plays')
    g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
    g.multi_recv([0, 1], {
        'plays': rfunc,
        ('user', 'wishes', 'game'): rfunc2
    }, 'sum')
    assert F.array_equal(g.nodes['game'].data['y'],
                         F.tensor([[3., 3.], [3., 3.]]))

    # test multi recv with apply function
    g.send(g.edges(etype='plays'), mfunc, etype='plays')
    g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
    g.multi_recv([0, 1], {
        'plays': (rfunc, afunc),
        ('user', 'wishes', 'game'): rfunc2
    }, 'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'],
                         F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.send(g.edges(etype='plays'), mfunc, etype='plays')
        g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
        g.multi_recv([0, 1], {
            'plays': (rfunc, afunc),
            'wishes': rfunc2
        }, cred, afunc)
        y = g.nodes['game'].data['y']
        g1 = g['plays']
        g2 = g['wishes']
        g1.send(g1.edges(), mfunc)
        g1.recv(g1.nodes('game'), rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g2.send(g2.edges(), mfunc)
        g2.recv(g2.nodes('game'), rfunc2)
        y2 = g.nodes['game'].data['y']
        yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        yy = yy + 1  # final afunc
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_recv([0, 1], {'plays': rfunc, 'follows': rfunc2}, 'sum')
    except dgl.DGLError:
        fail = True
    assert fail
Пример #18
0
def _test_construct_graphs_multiple():
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData, DGLGraphConstructor
    num_nodes = 100
    num_edges = 1000
    num_graphs = 10
    num_dims = 3
    node_ids = np.array([], dtype=np.int)
    src_ids = np.array([], dtype=np.int)
    dst_ids = np.array([], dtype=np.int)
    ngraph_ids = np.array([], dtype=np.int)
    egraph_ids = np.array([], dtype=np.int)
    u_indices = np.array([], dtype=np.int)
    for i in range(num_graphs):
        l_node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        node_ids = np.append(node_ids, l_node_ids)
        _, l_u_indices = np.unique(l_node_ids, return_index=True)
        u_indices = np.append(u_indices, l_u_indices)
        ngraph_ids = np.append(ngraph_ids, np.full(num_nodes, i))
        src_ids = np.append(src_ids, np.random.choice(
            l_node_ids, size=num_edges))
        dst_ids = np.append(dst_ids, np.random.choice(
            l_node_ids, size=num_edges))
        egraph_ids = np.append(egraph_ids, np.full(num_edges, i))
    ndata = {'feat': np.random.rand(num_nodes*num_graphs, num_dims),
             'label': np.random.randint(2, size=num_nodes*num_graphs)}
    node_data = NodeData(node_ids, ndata, graph_id=ngraph_ids)
    edata = {'feat': np.random.rand(
        num_edges*num_graphs, num_dims), 'label': np.random.randint(2, size=num_edges*num_graphs)}
    edge_data = EdgeData(src_ids, dst_ids, edata, graph_id=egraph_ids)
    gdata = {'feat': np.random.rand(num_graphs, num_dims),
             'label': np.random.randint(2, size=num_graphs)}
    graph_data = GraphData(np.arange(num_graphs), gdata)
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        node_data, edge_data, graph_data)
    assert len(graphs) == num_graphs
    assert len(data_dict) == len(gdata)
    for k, v in data_dict.items():
        assert F.array_equal(F.tensor(gdata[k]), v)
    for i, g in enumerate(graphs):
        assert g.is_homogeneous
        assert g.num_nodes() == num_nodes
        assert g.num_edges() == num_edges

        def assert_data(lhs, rhs, size, node=False):
            for key, value in lhs.items():
                assert key in rhs
                value = value[i*size:(i+1)*size]
                if node:
                    indices = u_indices[i*size:(i+1)*size]
                    value = value[indices]
                assert F.array_equal(F.tensor(value), rhs[key])
        assert_data(ndata, g.ndata, num_nodes, node=True)
        assert_data(edata, g.edata, num_edges)

    # Graph IDs found in node/edge CSV but not in graph CSV
    graph_data = GraphData(np.arange(num_graphs-2), {})
    expect_except = False
    try:
        _, _ = DGLGraphConstructor.construct_graphs(
            node_data, edge_data, graph_data)
    except:
        expect_except = True
    assert expect_except
Пример #19
0
def test_level2():
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
    g = create_test_heterograph()

    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}

    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}

    def mfunc(edges):
        return {'m': edges.src['h']}

    def afunc(nodes):
        return {'y': nodes.data['y'] + 1}

    #############################################################
    #  send_and_recv
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send_and_recv([2, 3], mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].send_and_recv([2, 3], mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.send_and_recv([2, 3], mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_send_and_recv(
        {
            'plays': (g.edges(etype='plays'), mfunc, rfunc),
            ('user', 'wishes', 'game'):
            (g.edges(etype='wishes'), mfunc, rfunc2)
        }, 'sum')
    assert F.array_equal(g.nodes['game'].data['y'],
                         F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_send_and_recv(
        {
            'plays': (g.edges(etype='plays'), mfunc, rfunc, afunc),
            ('user', 'wishes', 'game'):
            (g.edges(etype='wishes'), mfunc, rfunc2)
        }, 'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'],
                         F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.multi_send_and_recv(
            {
                'plays': (g.edges(etype='plays'), mfunc, rfunc, afunc),
                'wishes': (g.edges(etype='wishes'), mfunc, rfunc2)
            }, cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].send_and_recv(g.edges(etype='plays'), mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].send_and_recv(g.edges(etype='wishes'), mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        yy = yy + 1  # final afunc
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_send_and_recv(
            {
                'plays': (g.edges(etype='plays'), mfunc, rfunc),
                'follows': (g.edges(etype='follows'), mfunc, rfunc2)
            }, 'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()

    #############################################################
    #  pull
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.pull(1, mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].pull(1, mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
    fail = False
    try:
        g.pull(1, mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_pull(1, {
        'plays': (mfunc, rfunc),
        ('user', 'wishes', 'game'): (mfunc, rfunc2)
    }, 'sum')
    assert F.array_equal(g.nodes['game'].data['y'],
                         F.tensor([[0., 0.], [3., 3.]]))

    # test multi
    g.multi_pull(
        1, {
            'plays': (mfunc, rfunc, afunc),
            ('user', 'wishes', 'game'): (mfunc, rfunc2)
        }, 'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'],
                         F.tensor([[0., 0.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.multi_pull(1, {
            'plays': (mfunc, rfunc, afunc),
            'wishes': (mfunc, rfunc2)
        }, cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].pull(1, mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].pull(1, mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        g.nodes['game'].data['y'] = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        g.apply_nodes(afunc, 1, ntype='game')
        yy = g.nodes['game'].data['y']
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_pull(1, {
            'plays': (mfunc, rfunc),
            'follows': (mfunc, rfunc2)
        }, 'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()

    #############################################################
    #  update_all
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.update_all(mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # only one type
    g['plays'].update_all(mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.update_all(mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_update_all(
        {
            'plays': (mfunc, rfunc),
            ('user', 'wishes', 'game'): (mfunc, rfunc2)
        }, 'sum')
    assert F.array_equal(g.nodes['game'].data['y'],
                         F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_update_all(
        {
            'plays': (mfunc, rfunc, afunc),
            ('user', 'wishes', 'game'): (mfunc, rfunc2)
        }, 'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'],
                         F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean', 'stack']:
        g.multi_update_all(
            {
                'plays': (mfunc, rfunc, afunc),
                'wishes': (mfunc, rfunc2)
            }, cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].update_all(mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].update_all(mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        if cred == 'stack':
            # stack has two both correct outcomes
            yy1 = F.stack([F.unsqueeze(y1, 1), F.unsqueeze(y2, 1)], 1)
            yy1 = yy1 + 1  # final afunc
            yy2 = F.stack([F.unsqueeze(y2, 1), F.unsqueeze(y1, 1)], 1)
            yy2 = yy2 + 1  # final afunc
            assert F.array_equal(y, yy1) or F.array_equal(y, yy2)
        else:
            yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.update_all({
            'plays': (mfunc, rfunc),
            'follows': (mfunc, rfunc2)
        }, 'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()
Пример #20
0
def check_negative_sampler(mode, exclude_positive, neg_size):
    g = generate_rand_graph(100)
    num_edges = g.number_of_edges()
    etype = np.random.randint(0, 10, size=g.number_of_edges(), dtype=np.int64)
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))

    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
    # Test the homogeneous graph.

    batch_size = 50
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            negative_mode=mode,
                                            reset=False,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all',
                                                           order='eid')
        assert_array_equal(
            F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)),
            F.asnumpy(
                g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc),
                           F.gather_row(pos_edges.parent_nid, pos_ldst))))

        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all',
                                                           order='eid')

        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
        for i in range(len(neg_eid)):
            neg_d = int(F.asnumpy(neg_dst)[i])
            neg_e = int(F.asnumpy(neg_eid)[i])
            assert (neg_d, neg_e) in pos_map
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

        check_head_tail(neg_edges)
        pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid)
        neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid)
        pos_tails = np.sort(F.asnumpy(pos_tails))
        neg_tails = np.sort(F.asnumpy(neg_tails))
        np.testing.assert_equal(pos_tails, neg_tails)

        exist = neg_edges.edata['false_neg']
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)
        total_samples += batch_size
    assert total_samples <= num_edges

    # check replacement = True
    # with reset = False (default setting)
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            replacement=True,
                                            reset=False,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
    assert total_samples == num_edges

    # check replacement = False
    # with reset = False (default setting)
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            replacement=False,
                                            reset=False,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
    assert total_samples == num_edges

    # check replacement = True
    # with reset = True
    total_samples = 0
    max_samples = 2 * num_edges
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            replacement=True,
                                            reset=True,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) <= batch_size
        total_samples += len(pos_leid)
        if (total_samples >= max_samples):
            break
    assert total_samples >= max_samples

    # check replacement = False
    # with reset = True
    total_samples = 0
    max_samples = 2 * num_edges
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            replacement=False,
                                            reset=True,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) <= batch_size
        total_samples += len(pos_leid)
        if (total_samples >= max_samples):
            break
    assert total_samples >= max_samples

    # Test the knowledge graph.
    total_samples = 0
    for _, neg_edges in EdgeSampler(g,
                                    batch_size,
                                    negative_mode=mode,
                                    reset=False,
                                    neg_sample_size=neg_size,
                                    exclude_positive=exclude_positive,
                                    relations=g.edata['etype'],
                                    return_false_neg=True):
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all',
                                                           order='eid')
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
        exists = neg_edges.edata['false_neg']
        neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid)
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
        total_samples += batch_size
    assert total_samples <= num_edges
Пример #21
0
def test_to_block():
    def check(g, bg, ntype, etype, rhs_nodes):
        if rhs_nodes is not None:
            assert F.array_equal(bg.nodes[ntype + '_r'].data[dgl.NID], rhs_nodes)
        n_rhs_nodes = bg.number_of_nodes(ntype + '_r')
        assert F.array_equal(
            bg.nodes[ntype + '_l'].data[dgl.NID][:n_rhs_nodes],
            bg.nodes[ntype + '_r'].data[dgl.NID])

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

    def checkall(g, bg, rhs_nodes):
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
            if rhs_nodes is not None and ntype in rhs_nodes:
                check(g, bg, ntype, etype, rhs_nodes[ntype])
            else:
                check(g, bg, ntype, etype, None)

    g = dgl.heterograph({
        ('A', 'AA', 'A'): [(0, 1), (2, 3), (1, 2), (3, 4)],
        ('A', 'AB', 'B'): [(0, 1), (1, 3), (3, 5), (1, 6)],
        ('B', 'BA', 'A'): [(2, 3), (3, 2)]})
    g_a = g['AA']

    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)

    rhs_nodes = F.tensor([3, 4], dtype=F.int64)
    bg = dgl.to_block(g_a, rhs_nodes)
    check(g_a, bg, 'A', 'AA', rhs_nodes)

    rhs_nodes = F.tensor([4, 3, 2, 1], dtype=F.int64)
    bg = dgl.to_block(g_a, rhs_nodes)
    check(g_a, bg, 'A', 'AA', rhs_nodes)

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
    assert bg.number_of_nodes('B_l') == 4
    assert F.array_equal(bg.nodes['B_l'].data[dgl.NID], bg.nodes['B_r'].data[dgl.NID])
    assert bg.number_of_nodes('A_r') == 0
    checkall(g_ab, bg, None)

    rhs_nodes = {'B': F.tensor([5, 6], dtype=F.int64)}
    bg = dgl.to_block(g, rhs_nodes)
    assert bg.number_of_nodes('B_l') == 2
    assert F.array_equal(bg.nodes['B_l'].data[dgl.NID], bg.nodes['B_r'].data[dgl.NID])
    assert bg.number_of_nodes('A_r') == 0
    checkall(g, bg, rhs_nodes)

    rhs_nodes = {'A': F.tensor([3, 4], dtype=F.int64), 'B': F.tensor([5, 6], dtype=F.int64)}
    bg = dgl.to_block(g, rhs_nodes)
    checkall(g, bg, rhs_nodes)

    rhs_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=F.int64), 'B': F.tensor([3, 5, 6, 1], dtype=F.int64)}
    bg = dgl.to_block(g, rhs_nodes=rhs_nodes)
    checkall(g, bg, rhs_nodes)
Пример #22
0
def check_weighted_negative_sampler(mode, exclude_positive, neg_size):
    g = generate_rand_graph(100)
    num_edges = g.number_of_edges()
    num_nodes = g.number_of_nodes()
    edge_weight = F.copy_to(
        F.tensor(np.full((num_edges, ), 1, dtype=np.float32)), F.cpu())
    node_weight = F.copy_to(
        F.tensor(np.full((num_nodes, ), 1, dtype=np.float32)), F.cpu())
    etype = np.random.randint(0, 10, size=num_edges, dtype=np.int64)
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))
    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')

    # Correctness check
    # Test the homogeneous graph.
    batch_size = 50
    # Test the knowledge graph with edge weight provied.
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            reset=False,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all',
                                                           order='eid')
        assert_array_equal(
            F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)),
            F.asnumpy(
                g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc),
                           F.gather_row(pos_edges.parent_nid, pos_ldst))))
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all',
                                                           order='eid')

        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
        for i in range(len(neg_eid)):
            neg_d = int(F.asnumpy(neg_dst[i]))
            neg_e = int(F.asnumpy(neg_eid[i]))
            assert (neg_d, neg_e) in pos_map
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

        check_head_tail(neg_edges)
        pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid)
        neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid)
        pos_tails = np.sort(F.asnumpy(pos_tails))
        neg_tails = np.sort(F.asnumpy(neg_tails))
        np.testing.assert_equal(pos_tails, neg_tails)

        exist = neg_edges.edata['false_neg']
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)
        total_samples += batch_size
    assert total_samples <= num_edges

    # Test the knowledge graph with edge weight provied.
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            reset=False,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all',
                                                           order='eid')
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
        exists = neg_edges.edata['false_neg']
        neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid)
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
        total_samples += batch_size
    assert total_samples <= num_edges

    # Test the knowledge graph with edge/node weight provied.
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            reset=False,
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all',
                                                           order='eid')
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
        exists = neg_edges.edata['false_neg']
        neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid)
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
        total_samples += batch_size
    assert total_samples <= num_edges

    # check replacement = True with pos edges no-uniform sample
    # with reset = False
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            replacement=True,
                                            reset=False,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
    assert total_samples == num_edges

    # check replacement = True with pos edges no-uniform sample
    # with reset = True
    total_samples = 0
    max_samples = 4 * num_edges
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            replacement=True,
                                            reset=True,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
        if total_samples >= max_samples:
            break
    assert total_samples == max_samples

    # check replacement = False with pos/neg edges no-uniform sample
    # reset = False
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            replacement=False,
                                            reset=False,
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
    assert total_samples == num_edges

    # check replacement = False with pos/neg edges no-uniform sample
    # reset = True
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            replacement=False,
                                            reset=True,
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
        if total_samples >= max_samples:
            break
    assert total_samples == max_samples

    # Check Rate
    dgl.random.seed(0)
    g = generate_rand_graph(1000)
    num_edges = g.number_of_edges()
    num_nodes = g.number_of_nodes()
    edge_weight = F.copy_to(
        F.tensor(np.full((num_edges, ), 1, dtype=np.float32)), F.cpu())
    edge_weight[0] = F.sum(edge_weight, dim=0)
    node_weight = F.copy_to(
        F.tensor(np.full((num_nodes, ), 1, dtype=np.float32)), F.cpu())
    node_weight[-1] = F.sum(node_weight, dim=0) / 200
    etype = np.random.randint(0, 20, size=num_edges, dtype=np.int64)
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())

    # Test w/o node weight.
    max_samples = num_edges // 5
    total_samples = 0
    # Test the knowledge graph with edge weight provied.
    edge_sampled = np.full((num_edges, ), 0, dtype=np.int32)
    node_sampled = np.full((num_nodes, ), 0, dtype=np.int32)
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            replacement=True,
                                            edge_weight=edge_weight,
                                            shuffle=True,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=False,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid')
        if 'head' in mode:
            neg_src = neg_edges.parent_nid[neg_lsrc]
            np.add.at(node_sampled, F.asnumpy(neg_src), 1)
        else:
            neg_dst = neg_edges.parent_nid[neg_ldst]
            np.add.at(node_sampled, F.asnumpy(neg_dst), 1)
        np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1)
        total_samples += batch_size
        if total_samples > max_samples:
            break

    # Check rate here
    edge_rate_0 = edge_sampled[0] / edge_sampled.sum()
    edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum()
    edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum()
    assert np.allclose(edge_rate_0, 0.5, atol=0.05)
    assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05)

    node_rate_0 = node_sampled[0] / node_sampled.sum()
    node_tail_half_cnt = node_sampled[node_sampled.shape[0] // 2:-1].sum()
    node_rate_tail_half = node_tail_half_cnt / node_sampled.sum()
    assert node_rate_0 < 0.02
    assert np.allclose(node_rate_tail_half, 0.5, atol=0.02)

    # Test the knowledge graph with edge/node weight provied.
    edge_sampled = np.full((num_edges, ), 0, dtype=np.int32)
    node_sampled = np.full((num_nodes, ), 0, dtype=np.int32)
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g,
                                            batch_size,
                                            replacement=True,
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            shuffle=True,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=False,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid')
        if 'head' in mode:
            neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
            np.add.at(node_sampled, F.asnumpy(neg_src), 1)
        else:
            neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
            np.add.at(node_sampled, F.asnumpy(neg_dst), 1)
        np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1)
        total_samples += batch_size
        if total_samples > max_samples:
            break

    # Check rate here
    edge_rate_0 = edge_sampled[0] / edge_sampled.sum()
    edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum()
    edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum()
    assert np.allclose(edge_rate_0, 0.5, atol=0.05)
    assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05)

    node_rate = node_sampled[-1] / node_sampled.sum()
    node_rate_a = np.average(node_sampled[:50]) / node_sampled.sum()
    node_rate_b = np.average(node_sampled[50:100]) / node_sampled.sum()
    # As neg sampling does not contain duplicate nodes,
    # this test takes some acceptable variation on the sample rate.
    assert np.allclose(node_rate, node_rate_a * 5, atol=0.002)
    assert np.allclose(node_rate_a, node_rate_b, atol=0.0002)
Пример #23
0
def test_out_subgraph(idtype):
    hg = dgl.heterograph(
        {
            ('user', 'follow', 'user'):
            ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
            ('user', 'play', 'game'): ([0, 0, 1, 3], [0, 1, 2, 2]),
            ('game', 'liked-by', 'user'):
            ([2, 2, 2, 1, 1, 0], [0, 1, 2, 0, 3, 0]),
            ('user', 'flips', 'coin'): ([0, 1, 2, 3], [0, 0, 0, 0])
        },
        idtype=idtype)
    subg = dgl.out_subgraph(hg, {'user': [0, 1], 'game': 0})
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    u, v = subg['follow'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(1, 0), (0, 1), (0, 2)}
    assert F.array_equal(hg['follow'].edge_ids(u, v),
                         subg['follow'].edata[dgl.EID])
    u, v = subg['play'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (0, 1), (1, 2)}
    assert F.array_equal(hg['play'].edge_ids(u, v),
                         subg['play'].edata[dgl.EID])
    u, v = subg['liked-by'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0)}
    assert F.array_equal(hg['liked-by'].edge_ids(u, v),
                         subg['liked-by'].edata[dgl.EID])
    u, v = subg['flips'].edges()
    edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
    assert edge_set == {(0, 0), (1, 0)}
    assert F.array_equal(hg['flips'].edge_ids(u, v),
                         subg['flips'].edata[dgl.EID])
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test store_ids
    subg = dgl.out_subgraph(hg, {'user': [0, 1], 'game': 0}, store_ids=False)
    for etype in subg.canonical_etypes:
        assert dgl.EID not in subg.edges[etype].data
    for ntype in subg.ntypes:
        assert dgl.NID not in subg.nodes[ntype].data

    # Test relabel nodes
    subg = dgl.out_subgraph(hg, {'user': [1], 'game': 0}, relabel_nodes=True)
    assert subg.idtype == idtype
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4

    u, v = subg['follow'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 0)}
    assert F.array_equal(hg['follow'].edge_ids(old_u, old_v),
                         subg['follow'].edata[dgl.EID])

    u, v = subg['play'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['game'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 2)}
    assert F.array_equal(hg['play'].edge_ids(old_u, old_v),
                         subg['play'].edata[dgl.EID])

    u, v = subg['liked-by'].edges()
    old_u = F.gather_row(subg.nodes['game'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['user'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(0, 0)}
    assert F.array_equal(hg['liked-by'].edge_ids(old_u, old_v),
                         subg['liked-by'].edata[dgl.EID])

    u, v = subg['flips'].edges()
    old_u = F.gather_row(subg.nodes['user'].data[dgl.NID], u)
    old_v = F.gather_row(subg.nodes['coin'].data[dgl.NID], v)
    edge_set = set(zip(list(F.asnumpy(old_u)), list(F.asnumpy(old_v))))
    assert edge_set == {(1, 0)}
    assert F.array_equal(hg['flips'].edge_ids(old_u, old_v),
                         subg['flips'].edata[dgl.EID])
    assert subg.num_nodes('user') == 2
    assert subg.num_nodes('game') == 2
    assert subg.num_nodes('coin') == 1
Пример #24
0
def test_copy():
    num_layers = 2
    g = generate_rand_graph(100)
    g.ndata['h'] = g.ndata['h1']
    nf = create_mini_batch(g, num_layers)
    nf.copy_from_parent()
    for i in range(nf.num_layers):
        assert len(g.ndata.keys()) == len(nf.layers[i].data.keys())
        for key in g.ndata.keys():
            assert key in nf.layers[i].data.keys()
            assert F.array_equal(nf.layers[i].data[key],
                                 g.ndata[key][nf.layer_parent_nid(i)])
    for i in range(nf.num_blocks):
        assert len(g.edata.keys()) == len(nf.blocks[i].data.keys())
        for key in g.edata.keys():
            assert key in nf.blocks[i].data.keys()
            assert F.array_equal(nf.blocks[i].data[key],
                                 g.edata[key][nf.block_parent_eid(i)])

    nf = create_mini_batch(g, num_layers)
    node_embed_names = [['h'], ['h1'], ['h']]
    edge_embed_names = [['h2'], ['h2']]
    nf.copy_from_parent(node_embed_names=node_embed_names,
                        edge_embed_names=edge_embed_names)
    for i in range(nf.num_layers):
        assert len(node_embed_names[i]) == len(nf.layers[i].data.keys())
        for key in node_embed_names[i]:
            assert key in nf.layers[i].data.keys()
            assert F.array_equal(nf.layers[i].data[key],
                                 g.ndata[key][nf.layer_parent_nid(i)])
    for i in range(nf.num_blocks):
        assert len(edge_embed_names[i]) == len(nf.blocks[i].data.keys())
        for key in edge_embed_names[i]:
            assert key in nf.blocks[i].data.keys()
            assert F.array_equal(nf.blocks[i].data[key],
                                 g.edata[key][nf.block_parent_eid(i)])

    nf = create_mini_batch(g, num_layers)
    g.ndata['h0'] = F.clone(g.ndata['h'])
    node_embed_names = [['h0'], [], []]
    nf.copy_from_parent(node_embed_names=node_embed_names,
                        edge_embed_names=None)
    for i in range(num_layers):
        nf.block_compute(i, fn.copy_src(src='h%d' % i, out='m'),
                         fn.sum(msg='m', out='t'),
                         lambda nodes: {'h%d' % (i + 1): nodes.data['t'] + 1})
        g.update_all(fn.copy_src(src='h', out='m'), fn.sum(msg='m', out='t'),
                     lambda nodes: {'h': nodes.data['t'] + 1})
        assert F.array_equal(nf.layers[i + 1].data['h%d' % (i + 1)],
                             g.ndata['h'][nf.layer_parent_nid(i + 1)])
    nf.copy_to_parent(node_embed_names=[['h0'], ['h1'], ['h2']])
    for i in range(num_layers + 1):
        assert F.array_equal(nf.layers[i].data['h%d' % i],
                             g.ndata['h%d' % i][nf.layer_parent_nid(i)])

    nf = create_mini_batch(g, num_layers)
    g.ndata['h0'] = F.clone(g.ndata['h'])
    g.ndata['h1'] = F.clone(g.ndata['h'])
    g.ndata['h2'] = F.clone(g.ndata['h'])
    node_embed_names = [['h0'], ['h1'], ['h2']]
    nf.copy_from_parent(node_embed_names=node_embed_names,
                        edge_embed_names=None)

    def msg_func(edge, ind):
        assert 'h%d' % ind in edge.src.keys()
        return {'m': edge.src['h%d' % ind]}

    def reduce_func(node, ind):
        assert 'h%d' % (ind + 1) in node.data.keys()
        return {
            'h': F.sum(node.mailbox['m'], 1) + node.data['h%d' % (ind + 1)]
        }

    for i in range(num_layers):
        nf.block_compute(i, partial(msg_func, ind=i),
                         partial(reduce_func, ind=i))
Пример #25
0
def atest_nx_conversion(index_dtype):
    # check conversion between networkx and DGLGraph

    def _check_nx_feature(nxg, nf, ef):
        # check node and edge feature of nxg
        # this is used to check to_networkx
        num_nodes = len(nxg)
        num_edges = nxg.size()
        if num_nodes > 0:
            node_feat = ddict(list)
            for nid, attr in nxg.nodes(data=True):
                assert len(attr) == len(nf)
                for k in nxg.nodes[nid]:
                    node_feat[k].append(F.unsqueeze(attr[k], 0))
            for k in node_feat:
                feat = F.cat(node_feat[k], 0)
                assert F.allclose(feat, nf[k])
        else:
            assert len(nf) == 0
        if num_edges > 0:
            edge_feat = ddict(lambda: [0] * num_edges)
            for u, v, attr in nxg.edges(data=True):
                assert len(attr) == len(ef) + 1  # extra id
                eid = attr['id']
                for k in ef:
                    edge_feat[k][eid] = F.unsqueeze(attr[k], 0)
            for k in edge_feat:
                feat = F.cat(edge_feat[k], 0)
                assert F.allclose(feat, ef[k])
        else:
            assert len(ef) == 0

    n1 = F.randn((5, 3))
    n2 = F.randn((5, 10))
    n3 = F.randn((5, 4))
    e1 = F.randn((4, 5))
    e2 = F.randn((4, 7))
    g = dgl.graph([(0, 2), (1, 4), (3, 0), (4, 3)], index_dtype=index_dtype)
    g.ndata.update({'n1': n1, 'n2': n2, 'n3': n3})
    g.edata.update({'e1': e1, 'e2': e2})

    # convert to networkx
    nxg = dgl.to_networkx(g, node_attrs=['n1', 'n3'], edge_attrs=['e1', 'e2'])
    assert len(nxg) == 5
    assert nxg.size() == 4
    _check_nx_feature(nxg, {'n1': n1, 'n3': n3}, {'e1': e1, 'e2': e2})

    # convert to DGLGraph, nx graph has id in edge feature
    # use id feature to test non-tensor copy
    g = dgl.graph(nxg,
                  node_attrs=['n1'],
                  edge_attrs=['e1', 'id'],
                  index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
    # check graph size
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4
    # check number of features
    # test with existing dglgraph (so existing features should be cleared)
    assert len(g.ndata) == 1
    assert len(g.edata) == 2
    # check feature values
    assert F.allclose(g.ndata['n1'], n1)
    # with id in nx edge feature, e1 should follow original order
    assert F.allclose(g.edata['e1'], e1)
    assert F.array_equal(g.edata['id'], F.copy_to(F.arange(0, 4), F.cpu()))

    # test conversion after modifying DGLGraph
    # TODO(minjie): enable after mutation is supported
    #g.pop_e_repr('id') # pop id so we don't need to provide id when adding edges
    #new_n = F.randn((2, 3))
    #new_e = F.randn((3, 5))
    #g.add_nodes(2, data={'n1': new_n})
    ## add three edges, one is a multi-edge
    #g.add_edges([3, 6, 0], [4, 5, 2], data={'e1': new_e})
    #n1 = F.cat((n1, new_n), 0)
    #e1 = F.cat((e1, new_e), 0)
    ## convert to networkx again
    #nxg = g.to_networkx(node_attrs=['n1'], edge_attrs=['e1'])
    #assert len(nxg) == 7
    #assert nxg.size() == 7
    #_check_nx_feature(nxg, {'n1': n1}, {'e1': e1})

    # now test convert from networkx without id in edge feature
    # first pop id in edge feature
    for _, _, attr in nxg.edges(data=True):
        attr.pop('id')
    # test with a new graph
    g = dgl.graph(nxg, node_attrs=['n1'], edge_attrs=['e1'])
    # check graph size
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4
    # check number of features
    assert len(g.ndata) == 1
    assert len(g.edata) == 1
    # check feature values
    assert F.allclose(g.ndata['n1'], n1)
    # edge feature order follows nxg.edges()
    edge_feat = []
    for _, _, attr in nxg.edges(data=True):
        edge_feat.append(F.unsqueeze(attr['e1'], 0))
    edge_feat = F.cat(edge_feat, 0)
    assert F.allclose(g.edata['e1'], edge_feat)

    # Test converting from a networkx graph whose nodes are
    # not labeled with consecutive-integers.
    nxg = nx.cycle_graph(5)
    nxg.remove_nodes_from([0, 4])
    for u in nxg.nodes():
        nxg.nodes[u]['h'] = F.tensor([u])
    for u, v, d in nxg.edges(data=True):
        d['h'] = F.tensor([u, v])

    g = dgl.DGLGraph()
    g.from_networkx(nxg, node_attrs=['h'], edge_attrs=['h'])
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    assert g.has_edge_between(0, 1)
    assert g.has_edge_between(1, 2)
    assert F.allclose(g.ndata['h'], F.tensor([[1.], [2.], [3.]]))
    assert F.allclose(g.edata['h'],
                      F.tensor([[1., 2.], [1., 2.], [2., 3.], [2., 3.]]))
Пример #26
0
def check_negative_sampler(mode, exclude_positive, neg_size):
    g = generate_rand_graph(100)
    etype = np.random.randint(0, 10, size=g.number_of_edges(), dtype=np.int64)
    g.edata['etype'] = F.tensor(etype)

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))

    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
    # Test the homogeneous graph.
    for pos_edges, neg_edges in EdgeSampler(g,
                                            50,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all',
                                                           order='eid')
        assert_array_equal(
            F.asnumpy(pos_edges.parent_eid[pos_leid]),
            F.asnumpy(
                g.edge_ids(pos_edges.parent_nid[pos_lsrc],
                           pos_edges.parent_nid[pos_ldst])))

        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all',
                                                           order='eid')
        neg_src = neg_edges.parent_nid[neg_lsrc]
        neg_dst = neg_edges.parent_nid[neg_ldst]
        neg_eid = neg_edges.parent_eid[neg_leid]
        for i in range(len(neg_eid)):
            neg_d = int(F.asnumpy(neg_dst[i]))
            neg_e = int(F.asnumpy(neg_eid[i]))
            assert (neg_d, neg_e) in pos_map
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

        exist = neg_edges.edata['false_neg']
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)

    # Test the knowledge graph.
    for _, neg_edges in EdgeSampler(g,
                                    50,
                                    negative_mode=mode,
                                    neg_sample_size=neg_size,
                                    exclude_positive=exclude_positive,
                                    relations=g.edata['etype'],
                                    return_false_neg=True):
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all',
                                                           order='eid')
        neg_src = neg_edges.parent_nid[neg_lsrc]
        neg_dst = neg_edges.parent_nid[neg_ldst]
        neg_eid = neg_edges.parent_eid[neg_leid]
        exists = neg_edges.edata['false_neg']
        neg_edges.edata['etype'] = g.edata['etype'][neg_eid]
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
Пример #27
0
def test_to_simple(index_dtype):
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
    u, v = g.all_edges(form='uv', order='eid')
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

    su, sv = sg.all_edges(form='uv', order='eid')
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
    sc = F.asnumpy(sg.edata['count'])
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.ndata['h'], g.ndata['h'])
    assert 'h' not in sg.edata
    # new ndata to sg
    sg.ndata['hh'] = F.tensor([[0.], [1.], [2.]])
    assert 'hh' not in g.ndata

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    assert 'h' not in sg.ndata
    assert 'h' not in sg.edata

    # heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follow', 'user'): ([0, 1, 2, 1, 1, 1],
                                     [1, 3, 2, 3, 4, 4]),
        ('user', 'plays', 'game'): ([3, 2, 1, 1, 3, 2, 2], [5, 3, 4, 4, 5, 3, 3])},
        index_dtype=index_dtype)
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([0, 1, 2, 3, 4])
    g.edges['follow'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(g, return_counts='weights', writeback_mapping=True, copy_edata=True)
    g.nodes['game'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
        eid_map = F.asnumpy(wb[etype])

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
    assert F.array_equal(sg.nodes['user'].data['hh'], g.nodes['user'].data['hh'])
    assert 'h' not in sg.nodes['game'].data
    # new ndata to sg
    sg.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert 'hhh' not in g.nodes['user'].data
    # share edata
    feat_idx = F.asnumpy(wb[('user', 'follow', 'user')])
    _, indices = np.unique(feat_idx, return_index=True)
    assert np.array_equal(F.asnumpy(sg.edges['follow'].data['h']),
                          F.asnumpy(g.edges['follow'].data['h'])[indices])

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
    assert 'h' not in sg.nodes['user'].data
    assert 'hh' not in sg.nodes['user'].data
Пример #28
0
def test_view1():
    # test relation view
    HG = create_test_heterograph()
    ntypes = ['user', 'game', 'developer']
    canonical_etypes = [('user', 'follows', 'user'), ('user', 'plays', 'game'),
                        ('user', 'wishes', 'game'),
                        ('developer', 'develops', 'game')]
    etypes = ['follows', 'plays', 'wishes', 'develops']

    def _test_query():
        for etype in etypes:
            utype, _, vtype = HG.to_canonical_etype(etype)
            g = HG[etype]
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
                assert g.has_edge_between(src, dst)
            assert F.asnumpy(g.has_edges_between(srcs, dsts)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
                assert not g.has_edge_between(src, dst)
            assert not F.asnumpy(g.has_edges_between(srcs, dsts)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0)).tolist()) == set(pred)
            u, v = g.in_edges([0])
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
            assert g.in_degree(0) == len(pred)

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0)).tolist()) == set(succ)
            u, v = g.out_edges([0])
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
            assert g.out_degree(0) == len(succ)

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
                assert g.edge_id(src, dst) == i
                assert F.asnumpy(g.edge_id(src, dst,
                                           force_multi=True)).tolist() == [i]
            assert F.asnumpy(g.edge_ids(srcs,
                                        dsts)).tolist() == list(range(n_edges))
            u, v, e = g.edge_ids(srcs, dsts, force_multi=True)
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts
            assert F.asnumpy(e).tolist() == list(range(n_edges))

            # find_edges
            u, v = g.find_edges(list(range(n_edges)))
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges(form='all', order=order)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees())
            out_degrees = F.asnumpy(g.out_degrees())
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    _test_query()
    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
    }
    _test_query()

    # test features
    HG.nodes['user'].data['h'] = F.ones((HG.number_of_nodes('user'), 5))
    HG.nodes['game'].data['m'] = F.ones((HG.number_of_nodes('game'), 3)) * 2

    # test only one node type
    g = HG['follows']
    assert g.number_of_nodes() == 3

    # test ndata and edata
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1  # ok
    f2 = HG.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    assert F.array_equal(F.tensor(g.nodes()), F.arange(0, 3))

    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = HG.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    assert F.array_equal(F.tensor(g.edges(form='eid')), F.arange(0, 2))

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        HG.ndata['h']
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        HG.edata['h']
    except dgl.DGLError:
        fail = True
    assert fail
Пример #29
0
def test_reverse():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
    assert g.edge_id(0, 1) == rg.edge_id(1, 0)
    assert g.edge_id(1, 2) == rg.edge_id(2, 1)
    assert g.edge_id(2, 1) == rg.edge_id(1, 2)

    # test dgl.reverse_heterograph
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
    g_r = dgl.reverse_heterograph(g)
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    u_g, v_g, eids_g = g.all_edges(form='all')
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all')
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert len(g_r.edata) == 0

    # without share ndata
    g_r = dgl.reverse_heterograph(g, copy_ndata=False)
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
    g_r = dgl.reverse_heterograph(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert F.array_equal(g.edata['h'], g_r.edata['h'])

    # add new node feature to g_r
    g_r.ndata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.ndata) is False
    assert ('hh' in g_r.ndata) is True

    # add new edge feature to g_r
    g_r.edata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.edata) is False
    assert ('hh' in g_r.edata) is True

    # test heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1])})
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([1, 1, 1, 1, 1])
    g.nodes['game'].data['h'] = F.tensor([0, 1])
    g.edges['follows'].data['h'] = F.tensor([0, 1, 2, 4, 3 ,1, 3])
    g.edges['follows'].data['hh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    g_r = dgl.reverse_heterograph(g)

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert F.array_equal(g.nodes['user'].data['h'], g_r.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['user'].data['hh'], g_r.nodes['user'].data['hh'])
    assert F.array_equal(g.nodes['game'].data['h'], g_r.nodes['game'].data['h'])
    assert len(g_r.edges['follows'].data) == 0
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'follows', 'user'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('user', 'follows', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'plays', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'plays', 'user'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('developer', 'develops', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all', etype=('game', 'develops', 'developer'))
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
    g_r = dgl.reverse_heterograph(g, copy_ndata=False)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert len(g_r.nodes['user'].data) == 0
    assert len(g_r.nodes['game'].data) == 0

    g_r = dgl.reverse_heterograph(g, copy_ndata=True, copy_edata=True)
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    assert F.array_equal(g.edges['follows'].data['h'], g_r.edges['follows'].data['h'])
    assert F.array_equal(g.edges['follows'].data['hh'], g_r.edges['follows'].data['hh'])

    # add new node feature to g_r
    g_r.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert ('hhh' in g.nodes['user'].data) is False
    assert ('hhh' in g_r.nodes['user'].data) is True

    # add new edge feature to g_r
    g_r.edges['follows'].data['hhh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ('hhh' in g.edges['follows'].data) is False
    assert ('hhh' in g_r.edges['follows'].data) is True
Пример #30
0
def test_flatten():
    def check_mapping(g, fg):
        if len(fg.ntypes) == 1:
            SRC = DST = fg.ntypes[0]
        else:
            SRC = fg.ntypes[0]
            DST = fg.ntypes[1]

        etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
        eids = F.asnumpy(fg.edata[dgl.EID]).tolist()

        for i, (etype, eid) in enumerate(zip(etypes, eids)):
            src_g, dst_g = g.find_edges([eid], g.canonical_etypes[etype])
            src_fg, dst_fg = fg.find_edges([i])
            # TODO(gq): I feel this code is quite redundant; can we just add new members (like
            # "induced_srcid") to returned heterograph object and not store them as features?
            assert src_g == fg.nodes[SRC].data[dgl.NID][src_fg]
            tid = F.asnumpy(fg.nodes[SRC].data[dgl.NTYPE][src_fg])[0]
            assert g.canonical_etypes[etype][0] == g.ntypes[tid]
            assert dst_g == fg.nodes[DST].data[dgl.NID][dst_fg]
            tid = F.asnumpy(fg.nodes[DST].data[dgl.NTYPE][dst_fg])[0]
            assert g.canonical_etypes[etype][2] == g.ntypes[tid]

    # check for wildcard slices
    g = create_test_heterograph()
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g.edges['wishes'].data['e'] = F.ones((2, 4))
    g.edges['wishes'].data['f'] = F.ones((2, 4))

    fg = g['user', :, 'game']  # user--plays->game and user--wishes->game
    assert len(fg.ntypes) == 2
    assert fg.ntypes == ['user', 'game']
    assert fg.etypes == ['plays+wishes']

    assert F.array_equal(fg.nodes['user'].data['h'], F.ones((3, 5)))
    assert F.array_equal(fg.nodes['game'].data['i'], F.ones((2, 5)))
    assert F.array_equal(fg.edata['e'], F.ones((6, 4)))
    assert 'f' not in fg.edata

    etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
    eids = F.asnumpy(fg.edata[dgl.EID]).tolist()
    assert set(zip(etypes, eids)) == set([(1, 0), (1, 1), (1, 2), (1, 3),
                                          (2, 0), (2, 1)])

    check_mapping(g, fg)

    fg = g['user', :, 'user']
    # NOTE(gq): The node/edge types from the parent graph is returned if there is only one
    # node/edge type.  This differs from the behavior above.
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows']
    u1, v1 = g.edges(etype='follows', order='eid')
    u2, v2 = fg.edges(etype='follows', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g['developer', :, 'game']
    assert fg.ntypes == ['developer', 'game']
    assert fg.etypes == ['develops']
    u1, v1 = g.edges(etype='develops', order='eid')
    u2, v2 = fg.edges(etype='develops', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g[:, :, :]
    assert fg.ntypes == ['developer+user', 'game+user']
    assert fg.etypes == ['develops+follows+plays+wishes']
    check_mapping(g, fg)

    # Test another heterograph
    g_x = dgl.graph(([0, 1, 2], [1, 2, 3]), 'user', 'follows')
    g_y = dgl.graph(([0, 2], [2, 3]), 'user', 'knows')
    g_x.nodes['user'].data['h'] = F.randn((4, 3))
    g_x.edges['follows'].data['w'] = F.randn((3, 2))
    g_y.nodes['user'].data['hh'] = F.randn((4, 5))
    g_y.edges['knows'].data['ww'] = F.randn((2, 10))
    g = dgl.hetero_from_relations([g_x, g_y])

    assert F.array_equal(g.ndata['h'], g_x.ndata['h'])
    assert F.array_equal(g.ndata['hh'], g_y.ndata['hh'])
    assert F.array_equal(g.edges['follows'].data['w'], g_x.edata['w'])
    assert F.array_equal(g.edges['knows'].data['ww'], g_y.edata['ww'])

    fg = g['user', :, 'user']
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

    fg = g['user', :, :]
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)