Пример #1
0
def test_filter():
    g = DGLGraph()
    g.add_nodes(4)
    g.add_edges([0, 1, 2, 3], [1, 2, 3, 0])

    n_repr = np.zeros((4, 5))
    e_repr = np.zeros((4, 5))
    n_repr[[1, 3]] = 1
    e_repr[[1, 3]] = 1
    n_repr = F.copy_to(F.zerocopy_from_numpy(n_repr), F.ctx())
    e_repr = F.copy_to(F.zerocopy_from_numpy(e_repr), F.ctx())

    g.ndata['a'] = n_repr
    g.edata['a'] = e_repr

    def predicate(r):
        return F.max(r.data['a'], 1) > 0

    # full node filter
    n_idx = g.filter_nodes(predicate)
    assert set(F.zerocopy_to_numpy(n_idx)) == {1, 3}

    # partial node filter
    n_idx = g.filter_nodes(predicate, [0, 1])
    assert set(F.zerocopy_to_numpy(n_idx)) == {1}

    # full edge filter
    e_idx = g.filter_edges(predicate)
    assert set(F.zerocopy_to_numpy(e_idx)) == {1, 3}

    # partial edge filter
    e_idx = g.filter_edges(predicate, [0, 1])
    assert set(F.zerocopy_to_numpy(e_idx)) == {1}
Пример #2
0
def test_node_frame():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    data = np.random.rand(10, 3)
    new_data = data.take([0, 1, 2, 7, 8, 9], axis=0)
    g.ndata['h'] = F.zerocopy_from_numpy(data)

    # remove nodes
    g.remove_nodes(range(3, 7))
    assert F.allclose(g.ndata['h'], F.zerocopy_from_numpy(new_data))
Пример #3
0
def test_pack_traces():
    traces, types = (np.array(
        [[ 0,  1, -1, -1, -1, -1, -1],
         [ 0,  1,  1,  3,  0,  0,  0]], dtype='int64'),
        np.array([0, 0, 1, 0, 0, 1, 0], dtype='int64'))
    traces = F.zerocopy_from_numpy(traces)
    types = F.zerocopy_from_numpy(types)
    result = dgl.sampling.pack_traces(traces, types)
    assert F.array_equal(result[0], F.tensor([0, 1, 0, 1, 1, 3, 0, 0, 0], dtype=F.int64))
    assert F.array_equal(result[1], F.tensor([0, 0, 0, 0, 1, 0, 0, 1, 0], dtype=F.int64))
    assert F.array_equal(result[2], F.tensor([2, 7], dtype=F.int64))
    assert F.array_equal(result[3], F.tensor([0, 2], dtype=F.int64))
Пример #4
0
def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    score.requires_grad_()
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    y_1 = nn.edge_softmax(g, score, eids)
    y_1.backward(grad)
    grad_1 = score.grad
    score.grad.zero_()
    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    y_2 = nn.edge_softmax(subg, score)
    y_2.backward(grad)
    grad_2 = score.grad
    score.grad.zero_()

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)
Пример #5
0
def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    with tf.GradientTape() as tape:
        tape.watch(score)
        y_1 = nn.edge_softmax(g, score, eids)
        grads = tape.gradient(y_1, [score])
    grad_1 = grads[0]
    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    with tf.GradientTape() as tape:
        tape.watch(score)
        y_2 = nn.edge_softmax(subg, score)
        grads = tape.gradient(y_2, [score])
    grad_2 = grads[0]

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)
Пример #6
0
def test_sample_neighbors_exclude_edges_homoG(dtype):
    u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300,size=100, dtype=dtype)))
    v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=u_nodes.shape, dtype=dtype))
    g = dgl.graph((u_nodes, v_nodes))

    (U, V, EID) = (0, 1, 2)

    nd_b_idx = np.random.randint(low=1,high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25,high=49, dtype=dtype)
    b_idx = np.random.randint(low=1,high=24, dtype=dtype)
    e_idx = np.random.randint(low=25,high=49, dtype=dtype)
    sampled_amount = np.random.randint(low=1,high=10, dtype=dtype)

    g_edges = g.all_edges(form='all')
    excluded_edges = g_edges[EID][b_idx:e_idx]
    sampled_node = g_edges[V][nd_b_idx:nd_e_idx]
    excluded_nodes_U = g_edges[U][b_idx:e_idx]
    excluded_nodes_V = g_edges[V][b_idx:e_idx]

    sg = dgl.sampling.sample_neighbors(g, sampled_node,
                                       sampled_amount, exclude_edges=excluded_edges)

    assert not np.any(F.asnumpy(sg.has_edges_between(excluded_nodes_U,excluded_nodes_V)))
Пример #7
0
def test_sample_neighbors_exclude_edges_heteroG(dtype):
    d_i_d_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_i_d_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_i_d_u_nodes.shape, dtype=dtype))
    d_i_g_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_i_g_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_i_g_u_nodes.shape, dtype=dtype))
    d_t_d_u_nodes = F.zerocopy_from_numpy(np.unique(np.random.randint(300, size=100, dtype=dtype)))
    d_t_d_v_nodes = F.zerocopy_from_numpy(np.random.randint(25, size=d_t_d_u_nodes.shape, dtype=dtype))

    g = dgl.heterograph({
        ('drug', 'interacts', 'drug'): (d_i_d_u_nodes, d_i_d_v_nodes),
        ('drug', 'interacts', 'gene'): (d_i_g_u_nodes, d_i_g_v_nodes),
        ('drug', 'treats', 'disease'): (d_t_d_u_nodes, d_t_d_v_nodes)
    })

    (U, V, EID) = (0, 1, 2)

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    did_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    did_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    sampled_amount = np.random.randint(low=1, high=10, dtype=dtype)

    drug_i_drug_edges = g.all_edges(form='all', etype=('drug','interacts','drug'))
    excluded_d_i_d_edges = drug_i_drug_edges[EID][did_b_idx:did_e_idx]
    sampled_drug_node = drug_i_drug_edges[V][nd_b_idx:nd_e_idx]
    did_excluded_nodes_U = drug_i_drug_edges[U][did_b_idx:did_e_idx]
    did_excluded_nodes_V = drug_i_drug_edges[V][did_b_idx:did_e_idx]

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    dig_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    dig_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    drug_i_gene_edges = g.all_edges(form='all', etype=('drug','interacts','gene'))
    excluded_d_i_g_edges = drug_i_gene_edges[EID][dig_b_idx:dig_e_idx]
    dig_excluded_nodes_U = drug_i_gene_edges[U][dig_b_idx:dig_e_idx]
    dig_excluded_nodes_V = drug_i_gene_edges[V][dig_b_idx:dig_e_idx]
    sampled_gene_node = drug_i_gene_edges[V][nd_b_idx:nd_e_idx]

    nd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    nd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    dtd_b_idx = np.random.randint(low=1, high=24, dtype=dtype)
    dtd_e_idx = np.random.randint(low=25, high=49, dtype=dtype)
    drug_t_dis_edges = g.all_edges(form='all', etype=('drug','treats','disease'))
    excluded_d_t_d_edges = drug_t_dis_edges[EID][dtd_b_idx:dtd_e_idx]
    dtd_excluded_nodes_U = drug_t_dis_edges[U][dtd_b_idx:dtd_e_idx]
    dtd_excluded_nodes_V = drug_t_dis_edges[V][dtd_b_idx:dtd_e_idx]
    sampled_disease_node = drug_t_dis_edges[V][nd_b_idx:nd_e_idx]
    excluded_edges  = {('drug', 'interacts', 'drug'): excluded_d_i_d_edges,
                       ('drug', 'interacts', 'gene'): excluded_d_i_g_edges,
                       ('drug', 'treats', 'disease'): excluded_d_t_d_edges
                      }

    sg = dgl.sampling.sample_neighbors(g, {'drug': sampled_drug_node,
                                           'gene': sampled_gene_node,
                                           'disease': sampled_disease_node},
                                       sampled_amount, exclude_edges=excluded_edges)

    assert not np.any(F.asnumpy(sg.has_edges_between(did_excluded_nodes_U,did_excluded_nodes_V,
                                                     etype=('drug','interacts','drug'))))
    assert not np.any(F.asnumpy(sg.has_edges_between(dig_excluded_nodes_U,dig_excluded_nodes_V,
                                                     etype=('drug','interacts','gene'))))
    assert not np.any(F.asnumpy(sg.has_edges_between(dtd_excluded_nodes_U,dtd_excluded_nodes_V,
                                                     etype=('drug','treats','disease'))))