Пример #1
0
 def diag_ggn_mc(self, mc_samples):
     with backpack(new_ext.DiagGGNMC(mc_samples=mc_samples)):
         _, _, loss = self.problem.forward_pass()
         loss.backward()
         diag_ggn_mc = [
             p.diag_ggn_mc for p in self.problem.model.parameters()
         ]
     return diag_ggn_mc
Пример #2
0
model = extend(model)
lossfunc = extend(lossfunc)

# %%
# We can now evaluate the loss and do a backward pass with Backpack
# -----------------------------------------------------------------

loss = lossfunc(model(X), y)

with backpack(
    extensions.BatchGrad(),
    extensions.Variance(),
    extensions.SumGradSquared(),
    extensions.BatchL2Grad(),
    extensions.DiagGGNMC(mc_samples=1),
    extensions.DiagGGNExact(),
    extensions.DiagHessian(),
    extensions.KFAC(mc_samples=1),
    extensions.KFLR(),
    extensions.KFRA(),
):
    loss.backward()

# %%
# And here are the results
# -----------------------------------------------------------------

for name, param in model.named_parameters():
    print(name)
    print(".grad.shape:             ", param.grad.shape)
Пример #3
0
"""
Compute the gradient with PyTorch and the MC-sampled GGN diagonal with BackPACK.
"""

from torch.nn import CrossEntropyLoss, Flatten, Linear, Sequential

from backpack import backpack, extend, extensions
from backpack.utils.examples import load_mnist_data

B = 4
X, y = load_mnist_data(B)

print("# Gradient with PyTorch, MC-sampled GGN diagonal with BackPACK | B =", B)

model = Sequential(Flatten(), Linear(784, 10),)
lossfunc = CrossEntropyLoss()

model = extend(model)
lossfunc = extend(lossfunc)

loss = lossfunc(model(X), y)

# number of MC samples is optional, defaults to 1
with backpack(extensions.DiagGGNMC(mc_samples=1)):
    loss.backward()

for name, param in model.named_parameters():
    print(name)
    print(".grad.shape:       ", param.grad.shape)
    print(".diag_ggn_mc.shape: ", param.diag_ggn_mc.shape)
Пример #4
0
 def diag_ggn_mc(self):
     with backpack(new_ext.DiagGGNMC()):
         self.loss().backward()
         diag_ggn = [p.diag_ggn_mc for p in self.model.parameters()]
     return diag_ggn
Пример #5
0
 def diag_ggn_mc(self, mc_samples) -> List[Tensor]:  # noqa:D102
     with backpack(new_ext.DiagGGNMC(mc_samples=mc_samples)):
         _, _, loss = self.problem.forward_pass()
         loss.backward()
     return self.problem.collect_data("diag_ggn_mc")