def get_reward(new_state, time_step, action, xdata, signal, terminal_state, eval=False, epoch=0):
    reward = 0
    signal.fillna(value=0, inplace=True)

    if eval == False:
        bt = twp.Backtest(pd.Series(data=[x for x in xdata[time_step - 2:time_step]],
                                    index=signal[time_step - 2:time_step].index.values),
                          signal[time_step - 2:time_step],
                          signalType='shares')
        reward = ((bt.data['price'].iloc[-1] - bt.data['price'].iloc[-2]) * bt.data['shares'].iloc[-1])

    if terminal_state == 1 and eval == True:
        # save a figure of the test set
        bt = twp.Backtest(pd.Series(data=[x for x in xdata], index=signal.index.values), signal, signalType='shares')
        reward = bt.pnl.iloc[-1]

        plt.figure(figsize=(3, 4))
        bt.plotTrades()
        plt.axvline(x=400, color='black', linestyle='--')
        plt.text(250, 400, 'training data')
        plt.text(450, 400, 'test data')
        plt.suptitle(str(epoch))
        plt.savefig('plt/' + 'value_iter_' + str(epoch) + '.png', bbox_inches='tight', pad_inches=1, dpi=72)
        plt.close('all')

    print(time_step, terminal_state, eval, reward)

    return reward
Пример #2
0
def get_reward(new_state, time_step, action, xdata, signal, terminal_state, eval=False, epoch=0):
    reward = 0
    signal.fillna(value=0, inplace=True)

    if eval == False:
        # bt = twp.Backtest(pd.Series(data=[x for x in xdata], index=signal.index.values), signal, signalType='shares')
        # reward = bt.pnl.iloc[-1]
        # print(reward)
        bt = twp.Backtest(pd.Series(data=[x for x in xdata[time_step-2:time_step]], index=signal[time_step-2:time_step].index.values), signal[time_step-2:time_step], signalType='shares')
        reward = ((bt.data['price'].iloc[-1] - bt.data['price'].iloc[-2])*bt.data['shares'].iloc[-1])
        # print(reward)
        # print(xdata[time_step-2:time_step])
        # print(signal[time_step-2:time_step])
        # print(bt.data)
        # print('*******************************')
    if terminal_state == 1 and eval == True:
        #save a figure of the test set
        # print(signal)
        bt = twp.Backtest(pd.Series(data=[x for x in xdata], index=signal.index.values), signal, signalType='shares')
        reward = bt.pnl.iloc[-1]
        # print(reward)

        # print(bt.data)
        # plt.figure(figsize=(3,4))
        # bt.plotTrades()
        # plt.axvline(x=400, color='black', linestyle='--')
        # plt.text(250, 400, 'training data')
        # plt.text(450, 400, 'test data')
        # plt.suptitle(str(epoch))
        # plt.savefig('plt/'+str(epoch)+'.png')
    #print(time_step, terminal_state, eval, reward)

    return reward
def get_reward(new_state, time_step, action, xdata, signal, terminal_state, eval=False, epoch=0):
    reward = 0
    signal.fillna(value=0, inplace=True)

    if eval == False:
        bt = twp.Backtest(pd.Series(data=[x for x in xdata[time_step-2:time_step]], index=signal[time_step-2:time_step].index.values), signal[time_step-2:time_step], signalType='shares')
        reward = ((bt.data['price'].iloc[-1] - bt.data['price'].iloc[-2])*bt.data['shares'].iloc[-1])

    if terminal_state == 1 and eval == True:
        #save a figure of the test set
        bt = twp.Backtest(pd.Series(data=[x for x in xdata], index=signal.index.values), signal, signalType='shares')
        reward = bt.pnl.iloc[-1]

    #print(time_step, terminal_state, eval, reward)

    return reward
Пример #4
0
def get_reward(new_state,
               time_step,
               action,
               xdata,
               signal,
               terminal_state,
               epoch=0):
    reward = 0
    signal.fillna(value=0, inplace=True)
    if terminal_state == 0:
        # get reward for the most current action
        if signal[time_step] != signal[time_step - 1] and terminal_state == 0:
            i = 1
            while signal[time_step - i] == signal[time_step - 1 -
                                                  i] and time_step - 1 - i > 0:
                i += 1
            reward = (xdata[time_step - 1, 0] - xdata[time_step - i - 1, 0]
                      ) * signal[time_step - 1] * -100 + i * np.abs(
                          signal[time_step - 1]) / 10.0
        if signal[time_step] == 0 and signal[time_step - 1] == 0:
            reward -= 10

    # calculate the reward for all actions if the last iteration in set
    if terminal_state == 1:
        # run backtest, send list of trade signals and asset data to backtest function
        bt = twp.Backtest(pd.Series(data=[x[0] for x in xdata]),
                          signal,
                          signalType='shares')
        reward = bt.pnl.iloc[-1]

    return reward
Пример #5
0
def get_reward(new_state,
               time_step,
               action,
               xdata,
               signal,
               terminal_state,
               epoch=0):
    # counter = 0;
    # counter +=1;
    # # print(counter)
    print('*******Get_reward********')
    reward = 0
    print('time_step', time_step)
    signal.fillna(value=0, inplace=True)
    if terminal_state == 0:
        #get reward for the most current action
        if signal[time_step] != signal[time_step - 1] and terminal_state == 0:
            i = 1
            print('signal[time_step]', signal[time_step])
            print('SIGNALsignal[time_step-1]', signal[time_step - 1])
            print('SIGNAL', signal)

            while signal[time_step - i] == signal[time_step - 1 -
                                                  i] and time_step - 1 - i > 0:
                print('time_step-1-i', time_step - 1 - i)
                i += 1
                print('*****i*****', i)
            reward = (xdata[time_step - 1, 0] - xdata[time_step - i - 1, 0]
                      ) * signal[time_step - 1] * -100 + i * np.abs(
                          signal[time_step - 1]) / 10.0
            print('xdata', xdata)
            print('xdata[time_step-1, 0]', xdata[time_step - 1, 0])
            print('xdata[time_step - i-1, 0]', xdata[time_step - i - 1, 0])
            print('(xdata[time_step-1, 0] - xdata[time_step - i-1, 0])',
                  (xdata[time_step - 1, 0] - xdata[time_step - i - 1, 0]))
            print('signal[time_step - 1]', signal[time_step - 1])
            print('signal[time_step - 1]*-100', signal[time_step - 1] * -100)
            print('(-)*signal',
                  (xdata[time_step - 1, 0] - xdata[time_step - i - 1, 0]) *
                  signal[time_step - 1] * -100)
            print('i*np.abs(signal[time_step - 1])',
                  i * np.abs(signal[time_step - 1]))

        if signal[time_step] == 0 and signal[time_step - 1] == 0:
            reward -= 10
            # if you didn't trade for two days, you get a negative -10
    #calculate the reward for all actions if the last iteration in set
    if terminal_state == 1:
        #run backtest, send list of trade signals and asset data to backtest function
        bt = twp.Backtest(pd.Series(data=[x[0] for x in xdata]),
                          signal,
                          signalType='shares')
        reward = bt.pnl.iloc[-1]
        # print(bt.data)
        # print(reward)
    print('*******Get_reward********')
    return reward
Пример #6
0
def get_reward(new_state,
               time_step,
               action,
               xdata,
               signal,
               terminal_state,
               reward_dict,
               eval=False,
               epoch=0):
    reward = 0
    signal.fillna(value=0, inplace=True)
    if eval == False:
        for j in range(xdata.shape[1]):
            bt = twp.Backtest(pd.Series(
                data=[x[j] for x in xdata[time_step - 2:time_step]],
                index=signal[time_step - 2:time_step].index.values),
                              signal[time_step - 2:time_step],
                              signalType='shares')
            reward = (bt.data['price'].iloc[-1] -
                      bt.data['price'].iloc[-2]) * bt.data['shares'].iloc[-1]
            reward_dict[j].append(reward)

    if terminal_state == 1 and eval == True:
        for j in range(xdata.shape[1]):
            bt = twp.Backtest(pd.Series(data=[x[j] for x in xdata],
                                        index=signal.index.values),
                              signal,
                              signalType='shares')
            reward = bt.pnl.iloc[-1]
            reward_dict[j].append(reward)
            plt.figure(figsize=(9, 16))
            bt.plotTrades()
            plt.axvline(x=xdata.shape[0] - 100, color='black', linestyle='--')
            plt.text(250, 400, 'training data')
            plt.text(450, 400, 'test data')
            plt.suptitle(str(epoch))
            plt.savefig('plt/' + 'knapsack_' + str(j) + ' ' + str(epoch) +
                        '.png')
            plt.close('all')
        print('@ eval=TRUE')

    # print(time_step, terminal_state, eval, reward)

    return reward_dict
Пример #7
0
    def setUp(self):

        self.data = data.Data(1, live=False)
        print("Loading Data:", DATA_FILE_NAME)
        data.loadData(DATA_FILE_NAME)
        self.backtester = backtest.Backtest(cash=10000,
                                            data=self.data,
                                            minBrokerFee=1.00,
                                            perShareFee=0.0075,
                                            simple=True,
                                            stateObj=True)
Пример #8
0
def get_reward(new_state, time_step, action, xdata, signal, terminal_state, eval=False, epoch=0):
    reward = 0
    signal.fillna(value=0, inplace=True)

    if eval == False:
        try:
            bt = twp.Backtest(pd.Series(data=[x[0] for x in xdata[time_step - 2:time_step]], index=signal[time_step - 2:time_step].index.values),
                          signal[time_step - 2:time_step], signalType='shares')
            reward = np.max((bt.data['price'].iloc[-1] - bt.data['price'].iloc[-2]) * bt.data['shares'].iloc[-1])
        except:
            pass
    if terminal_state == 1 and eval == True:
        bt = twp.Backtest(pd.Series(data=[x[0] for x in xdata], index=signal.index.values), signal, signalType='shares')
        reward = bt.pnl.iloc[-1]
        plt.figure(figsize=(9, 16))
        bt.plotTrades()
        plt.axvline(x=400, color='black', linestyle='--')
        plt.text(250, 400, 'training data')
        plt.text(450, 400, 'test data')
        plt.suptitle(str(epoch))
        plt.savefig('plt/' + 'knapsack_' + str(epoch) + '.png')
        plt.close('all')

        '''
        # save a figure of the test set
        plt.figure(figsize=(10, 25))
        for i in range(xdata.T.shape[0]):
        #frame = pd.concat(btFrame, axis=1)
            bt = twp.Backtest(pd.Series(data=[x for x in xdata.T[i]], index=signal.index.values), signal, signalType='shares')
            reward += np.max(bt.pnl.iloc[-1])
            bt.plotTrades()
        #plt.axvline(x=400, color='black', linestyle='--')
        #plt.text(250, 400, 'training data')
        #plt.text(450, 400, 'test data')
        #plt.suptitle(str(epoch))
        plt.savefig('plt/' + 'knapsack_' + str(epoch) + '.png', bbox_inches='tight', pad_inches=1, dpi=72)
        plt.close('all')
        '''
    # print(time_step, terminal_state, eval, reward)

    return reward
Пример #9
0
def test2(df):
    ema2h = ind.iMA(df, 2, ma_method='EMA', applied_price='Hight')
    ema2l = ind.iMA(df, 2, ma_method='EMA', applied_price='Low')
    ema40 = ind.iMA(df, 40, ma_method='EMA')

    # Buy : ema2lがema40よりも上側にあり、Close値がema2lにタッチした場合、エントリーし、
    # BuyExit : High値がema2hにタッチしたら決済。
    be = ((df.Close < enve['Lower']) & rsi10 < 30)
    bExt = ema20 < df.Close

    se = ((enve['Upper'] < df.Close) & 70 < rsi10)
    sExt = df.Close < ema20

    t, pl = bt.Backtest(df, be, se, bExt, sExt, TP=1000, SL=5000, Limit=20)

    eq = bt.BacktestReport(t, pl)
Пример #10
0
def revTry(df):
    rsi10 = ind.iRSI(df, 10, 'Close')
    ema20 = ind.iMA(df, 20, ma_method='EMA')
    enve = ind.iEnvelopes(df, 10, 0.05)
    #ccc = pd.DataFrame({'Close' : df['Close'], 'EMA20': ema20, 'RSI' : rsi10, 'Upper' : enve['Upper'], 'Low' : enve['Lower']})
    #print(ccc)

    # Buy : エンベロープの下に突き抜ける + RSIが30以下で買い。
    be = ((df.Close < enve['Lower']) & rsi10 < 30)
    bExt = ema20 < df.Close

    se = ((enve['Upper'] < df.Close) & 70 < rsi10)
    sExt = df.Close < ema20

    t, pl = bt.Backtest(df, be, se, bExt, sExt, TP=1000, SL=5000, Limit=20)

    eq = bt.BacktestReport(t, pl)
Пример #11
0
def main():
    adxcross = MyStrategy()

    btest = bt.Backtest(500000.0, OTP_DATA, adxcross)
    btest.run()

    indicators = [
                  ind.cci(OTP_DATA, span=10),
                  ind.cci(OTP_DATA, span=20),
                  ]

    plotter = plt.plotter(OTP_DATA)


    for i in indicators:
        plotter.add_plot(i)

    plotter.plot()
Пример #12
0
def pair_target(up_bound, low_bound):
    up_bound = mu + up_bound * select_sigma
    low_bound = mu - low_bound * select_sigma
    Signal = arbitrage.Pairsignal()
    pairsignal = Signal.generate(spread = spread, mu = mu, \
                    up = up_bound, low = low_bound)
    data_backtest1 = copy.deepcopy(pairsignal)
    data_backtest1['price'] = data[asset2] - beta * data[asset1]
    data_backtest1['date'] = data_backtest.index
    data_backtest1['volumn'] = 1
    Pairbacktest = backtest.Backtest(stop_lose=-1, stop_profit=1)
    backtest_result1 = Pairbacktest.run(data_backtest1, visual=False)
    # annulized vol
    vol = backtest_result1['daily_PLrate'].std() * np.sqrt(252)
    # annualized return
    return_ = (backtest_result1['new_value'].iloc[-1] -
               1) * 252.0 / len(backtest_result1)
    # shape ratio
    sharpe = (return_ - rf) * 1.0 / (vol + 0.001)
    return sharpe
Пример #13
0
def getReward(timeStep, signal, price, state, endState):

    unit_reward = 1

    if not endState:
        # net earning from previous action
        net = (price[timeStep] - price[timeStep - 1]) * signal[timeStep - 1]
    else:
        bt = twp.Backtest(price, signal, signalType='shares')
        net = bt.pnl.iloc[-1]
    rewards = 0

    #intuition reward
    if net > 0:
        rewards += unit_reward * 2
    elif net < 0:
        rewards -= unit_reward / 2
    else:
        #rewards -= 1 #don't encourage hold
        rewards += 0
    '''# sma reward
    if not endState:
        #sma20 = state[0,0,2]
        #sma80 = state[0,0,3]
        sma20 = state[0, 2]
        sma80 = state[0,3]
        sma_net = sma20 - sma80

        if sma_net < 0 : # short sma < long sma, down trend
            if signal[timeStep - 1] < 0:
                rewards += unit_reward
        elif sma_net > 0: #short sma > long sma, up trend
            if signal[timeStep - 1] > 0:
                rewards += unit_reward'''

    return rewards
Пример #14
0
def test_agent(pdata, model, data, episode_i):

    signal = pd.Series(index=np.arange(len(data)))
    signal.fillna(value=0, inplace=True)
    signal.loc[0] = 1
    state = initializeState(pdata)
    endState = 0
    timeStep = 1
    realProfit = 0
    realInventory = []
    while not endState:
        Q = model.predict(state, batch_size=1)
        action = (np.argmax(Q))
        nextState, timeStep, signal, endState, realProfit, reward = trade(
            action, pdata, signal, timeStep, realInventory, data, realProfit)

        state = nextState

    while len(realInventory) > 0:
        realProfit += (data.iloc[-1] - realInventory.pop(0)) * 10

    long = 0
    short = 0
    hold = 0
    newdici = changedecision(signal)
    for j in range(signal.shape[0]):
        if signal.iloc[j] < 0:
            short += 1
        elif signal.iloc[j] > 0:
            long += 1
        else:
            hold += 1

    newprofitwhold = profitcal(data, newdici, 5000)
    print("Profit with hold: ", newprofitwhold, "  Orignal Profit: ",
          realProfit)
    print('Episode #: ', episode_i, ' No   Random, Buy: ', long, ', Sell: ',
          short, ', Hold: ', hold)

    bt = twp.Backtest(data, signal, signalType='shares')
    plt.figure(figsize=(20, 20))
    plt.subplot(2, 1, 1)
    plt.title("trades " + str(episode_i))
    plt.xlabel("timestamp")
    bt.plotTrades()
    plt.subplot(2, 1, 2)
    plt.title("PnL " + str(episode_i))
    plt.xlabel("timestamp")
    bt.pnl.plot(style='-')

    if episode_i % 10 == 0:
        plt.savefig('plot/' + str(episode_i) + '.png')
    plt.show()
    plt.close()

    bt2 = twp.Backtest(data, newdici, signalType='shares')
    plt.figure(figsize=(20, 20))
    plt.subplot(2, 1, 1)
    plt.title("trades " + str(episode_i))
    plt.xlabel("timestamp")
    bt2.plotTrades()
    plt.subplot(2, 1, 2)
    plt.title("PnL " + str(episode_i))
    plt.xlabel("timestamp")
    bt2.pnl.plot(style='-')

    if episode_i % 10 == 0:
        plt.savefig('plot/' + str(episode_i) + '_hold.png')

    plt.show()
    plt.close()
    endReward = bt.pnl.iloc[-1]

    return endReward, realProfit
Пример #15
0
        model.fit(state.reshape(1, 2), y, batch_size=1, nb_epoch=1, verbose=0)
        state = new_state
        if terminal_state == 1:  # terminal state
            status = 0
    eval_reward = evaluate_Q(indata, model)
    print("Epoch #: %s Reward: %f Epsilon: %f" % (i, eval_reward, epsilon))
    learning_progress.append((eval_reward))
    if epsilon > 0.1:
        epsilon -= (1.0 / epochs)

elapsed = np.round(timeit.default_timer() - start_time, decimals=2)
print("Completed in %f" % (elapsed, ))

# plot results
bt = twp.Backtest(pd.Series(data=[x[0] for x in xdata]),
                  signal,
                  signalType='shares')
bt.data['delta'] = bt.data['shares'].diff().fillna(0)

print(bt.data)

plt.figure()
bt.plotTrades()
plt.suptitle('epoch' + str(i))
plt.savefig('plt/final_trades' + '.png',
            bbox_inches='tight',
            pad_inches=1,
            dpi=72)  # assumes there is a ./plt dir
plt.close('all')

plt.figure()
Пример #16
0
import pandas as pd
import backtest as twp

from functions import getData
import numpy as np
# get price & techinical indicator data as pandas dataframe
data, data_prev, sma20, sma80, slowD, slowK = getData()
signal = pd.Series(index=np.arange(len(data)))

for i in range(signal.shape[0]):
    signal.loc[i] = 10
#signal.loc[1] = 0
signal.loc[0] = 1
print(signal)
bt = twp.Backtest(pd.Series(data=[x for x in data], index=signal.index.values),
                  signal,
                  signalType='shares')
endReward = bt.pnl.iloc[-1]
print(bt.data)
print(signal.shape[0])
print(endReward)
Пример #17
0
            xform_data = self.transform_.transform(X, y)
        except:
            xform_data = self.transform_.transform(X)
        return np.append(X, xform_data, axis=1)


class LogExpPipeline(Pipeline):
    def fit(self, X, y):
        super(LogExpPipeline, self).fit(X, np.log1p(y))

    def predict(self, X):
        return np.expm1(super(LogExpPipeline, self).predict(X))


import backtest
bt = backtest.Backtest()
bt.init_candle()
bt.resetbacktest()
bt.index = bt.size
bt.updateIndicators()
truth = bt.df

memory = joblib.Memory(cachedir=".")
n = truth.shape[1]
#
# XGBoost model
#
xgb_params = {}
xgb_params['objective'] = 'reg:linear'
xgb_params['learning_rate'] = 0.001
xgb_params['max_depth'] = int(6.0002117448743721)
Пример #18
0
                up = up_bound, low = low_bound)
data_backtest = copy.deepcopy(pairsignal)
coin_beta = EGresult_df.loc['amid', 'gas'].beta[0][0]
data_backtest['price'] = data['gas'] - coin_beta * data['amid']
data_backtest['date'] = data_backtest.index
data_backtest['volumn'] = 1
# visualization
data_backtest['signal'].plot()
plt.title('Pair Trading Strategy Signal Result')
plt.xlabel('Time')
plt.ylabel('Spread')
plt.show()
# ---------------------------------------------------------------------------- #
# ------------------------------ Strategy Backtest --------------------------- #
# ---------------------------------------------------------------------------- #
Pairbacktest = backtest.Backtest(stop_lose=-1, stop_profit=1)
backtest_result = Pairbacktest.run(data_backtest, visual=True)
# return distribution analysis
#dist_return = backtest_result['daily_PLrate'][backtest_result['daily_PLrate'] != 0]
#Return_dist = evaluation.Distribution(dist_return)
#Return_dist.analysis()
# signal analysis
print '====================== Signal Analysis ======================'
Pair_signal_est = evaluation.Signal_est(data=pairsignal)
Pair_signal_est.analysis()
# risk analysis
print '======================= Risk Analysis ======================='
Pair_risk_est = evaluation.Risk_est(data=backtest_result)
Pair_risk_est.analysis()
# drawdown analysis
print '======================= P&L Analysis ========================'
Пример #19
0
if __name__ == "__main__":
    # DATA_FILE_NAME = "resource\\OIH_adjusted.csv"
    DATA_FILE_NAME = "resource\\SPY_EOD.csv"
    trader = trader.Trader()
    data = data.Data(1, live=False)
    print("Loading Data:", DATA_FILE_NAME)
    data.loadData(DATA_FILE_NAME)
    print("Data Loaded")

    featureB = featureBuild.FeatureBuilder(data=data, queueSize=QUEUE_SIZE)
    print("Feature Builder Created")
    backTester = backtest.Backtest(cash=10000,
                                   data=data,
                                   counter=QUEUE_SIZE,
                                   minBrokerFee=1.00,
                                   perShareFee=0.0075,
                                   simple=True,
                                   stateObj=True)
    print("Backtester Created")
    agent = ddpg.DeepDPG(state_shape=QUEUE_SIZE,
                         normal_state_shape=featureB.numFeatures,
                         criticParams=ddpg.CriticParams(),
                         policyParams=ddpg.PolicyParams(),
                         OUParams=ddpg.OUParams(),
                         episodes=500)
    print("Agent Created")
    manager = manager.Manager(data=data,
                              agent=agent,
                              featureB=featureB,
                              backtester=backTester,
Пример #20
0
# Update EMA calcs for imported data
d.update_ema(ma_1)
d.update_ema(ma_2)

# Loop for x minutes
# for mins in range(720):
#     d.refresh_ohlc()
#     print('Refreshing OHLC data. Last ID: ' + str(d.ohlc_last_id))
#     time.sleep(60)

# Set up brain object with data and trade vol
b = brain.Brain(d)

# Backtest - pass data and brain object parameters
bt = backtest.Backtest(d, b)

# Monte carlo simulation from min to max MA
bt.run_ma_sim(type, 1, 50)

# Simulate single MA combo and export simulated trades
# bt.ma_sim(type, ma_1, ma_2)
# bt.export_trades()

# Save data
# d.export_ohlc()
# d.export_ohlc_csv()

# Testing
# d.get_cryptobal()
# d.get_fiatbal()
Пример #21
0
    def bestow(self,
               new_state,
               step,
               action,
               prices,
               trades,
               term,
               qs=None,
               epoch=None,
               plot=False,
               evaluate=False):
        '''
        returns reward for agent given the action taken
        '''
        bestowal = [0] * len(self.symbols)
        if evaluate == False:
            for i in range(len(self.symbols)):
                b_test = bt.Backtest(
                    pd.Series(data=prices[i, step - 2:step],
                              index=np.arange(step - 2, step)).astype(float),
                    pd.Series(data=trades[step - 2:step, i],
                              index=np.arange(step - 2, step)).astype(float),
                    roundShares=False,
                    signalType='shares')
                bestowal[i] = ((b_test.data['price'].iloc[-1] -
                                b_test.data['price'].iloc[-2]) *
                               b_test.data['trades'].iloc[-1])

        elif evaluate == True and term == True:
            for i in range(len(self.symbols)):
                close = self.data_test[:, 0, 0]

                b_test = bt.Backtest(pd.Series(data=prices[i, :],
                                               index=np.arange(len(trades))),
                                     pd.Series(data=trades[:, i]),
                                     roundShares=False,
                                     initialCash=self.init_cash,
                                     signalType='shares')
                b_test2 = bt.Backtest(pd.Series(data=close,
                                                index=np.arange(len(trades))),
                                      pd.Series(data=trades[:, i]),
                                      roundShares=False,
                                      initialCash=self.init_cash,
                                      signalType='shares')

                bestowal[i] = b_test.pnl.iloc[-1]
                if (plot == True) and ((epoch % 20 == 0) or epoch == 1):
                    matplotlib.rcParams['font.size'] = 24
                    f = plt.figure(figsize=(12, 12))
                    ax1 = f.add_subplot(2, 1, 1)
                    b_test2.plotTrades()
                    plt.axvline(x=round(self.data_size * 0.8),
                                color='black',
                                linestyle='--')
                    ax2 = f.add_subplot(2, 1, 2)
                    ax2.plot(b_test2.data.netProfit,
                             color='green',
                             label='Net Profit')
                    ax2.plot(b_test2.pnl, color='k', label='Adj. Profit')
                    plt.title('Profit and Loss')
                    plt.legend()

                    plt.savefig('./images/{}_{}sgd_summary.png'.format(
                        self.symbols[i], epoch),
                                bbox_inches='tight',
                                pad_inches=0.5,
                                dpi=60)
                    plt.close('all')
                    self.init_cash = 1000
        self.init_cash = 1000
        return bestowal