Пример #1
0
 def _fit_compute_node(self, node, Xs, ys, cache, **fit_params):
     # TODO: same as _compute_node TODO?
     if ys:
         output_data = node.fit_compute_func(
             unlistify(Xs), unlistify(ys), **fit_params
         )
     else:
         output_data = node.fit_compute_func(unlistify(Xs), **fit_params)
     output_data = listify(output_data)
     self._update_cache(cache, output_data, node)
Пример #2
0
 def _compute_node(self, node, Xs, cache):
     # TODO: Raise warning if computed output is already in cache.
     # This happens when recomputing a step that had a subset of its outputs already passed in the inputs.
     # TODO: Some regressors have extra options in their predict method, and they return a tuple of arrays.
     # https://scikit-learn.org/stable/glossary.html#term-predict
     output_data = node.compute_func(unlistify(Xs))
     output_data = listify(output_data)
     self._update_cache(cache, output_data, node)
Пример #3
0
 def _fit_node(self, node, Xs, ys, **fit_params):
     if ys:
         node.fit_func(unlistify(Xs), unlistify(ys), **fit_params)
     else:
         node.fit_func(unlistify(Xs), **fit_params)
Пример #4
0
def test_unlistify(x, expected, raises):
    with raises:
        assert unlistify(x) == expected