Пример #1
0
    def test_feature_sampling(self):
        num = 1024
        data = generate_array_floats(n=num)

        feat1 = Feature(data, random_seed=0)
        feat2 = Feature(data, random_seed=0)
        self.assertTrue(
            numpy.array_equal(feat1.input_sample, feat2.input_sample))
Пример #2
0
    def test_dataset_feature_names(self):
        num = SAMPLE_SIZE_SMALL
        feat1 = Feature(generate_array_floats(n=num), name="a")
        feat2 = Feature(generate_array_floats(n=num), name="b")
        dataset = DataSet([feat1, feat2])

        self.assertEqual(num, dataset.count)
        self.assertEqual(num, dataset.count)
        self.assertTrue(
            numpy.array_equal(feat1.values, dataset.features["a"].values))
        self.assertTrue(
            numpy.array_equal(feat2.values, dataset.features["b"].values))
        self.assertTrue(numpy.array_equal(dataset["a", :num], feat1[:num]))
        self.assertTrue(numpy.array_equal(dataset["b", :num], feat2[:num]))
Пример #3
0
    def test_dataset_custom_loader(self):
        num = SAMPLE_SIZE_SMALL
        arr = generate_array_floats(n=num)

        class MyCustomDataLoader(object):
            def __len__(self):
                return len(arr)

            def __getitem__(self, idx):
                return arr[idx]

        dataset1 = DataSet([Feature(arr)], random_seed=0)
        dataset2 = DataSet([Feature(MyCustomDataLoader())], random_seed=0)
        self.assertTrue(
            numpy.array_equal(dataset1.input_fn(), dataset2.input_fn()))
Пример #4
0
    def test_feature_indexing(self):
        num = 1024
        data = generate_array_floats(n=num)

        feat = Feature(data)
        self.assertEqual(10, len(feat[:10]))
        self.assertEqual(10, len(feat[0:10]))
        self.assertEqual(10, len(feat[0:10:1]))
        self.assertEqual(5, len(feat[0:10:2]))
Пример #5
0
    def test_feature_init(self):
        num = 1024
        data = generate_array_floats(n=num)

        feat = Feature(data)
        self.assertEqual(num, len(feat))
        self.assertEqual(num, len(feat[:]))
        self.assertTrue(numpy.array_equal(data, feat.values))
        self.assertTrue(numpy.array_equal(data[:num], feat[:num]))
        self.assertNotEqual(feat.sample_var, -1)
Пример #6
0
    def test_dataset_different_shapes(self):
        num = SAMPLE_SIZE_SMALL
        feat1 = Feature(generate_array_floats(n=num), name="feat1")
        feat2 = Feature(generate_onehot_matrix(n=num), name="feat2")
        dataset = DataSet([feat1, feat2])

        self.assertEqual(num, dataset.count)
        self.assertEqual(num, dataset.count)
        self.assertTrue(
            numpy.array_equal(feat1.values, dataset.features["feat1"].values))
        self.assertTrue(
            numpy.array_equal(feat2.values, dataset.features["feat2"].values))
        self.assertTrue(numpy.array_equal(dataset["feat1", :num], feat1[:num]))
        self.assertTrue(numpy.array_equal(dataset["feat2", :num], feat2[:num]))

        arr1 = dataset[:, :num]
        arr2 = [feat.values[:num] for feat in (feat1, feat2)]
        for col1, col2 in zip(arr1, arr2):
            self.assertTrue(numpy.array_equal(col1, col2))
Пример #7
0
    def test_feature_custom_loader(self):
        num = 1024
        data = generate_array_floats(n=num)

        class MyCustomDataLoader(object):
            def __len__(self):
                return len(data)

            def __getitem__(self, idx):
                return data[idx]

        feat1 = Feature(data, random_seed=0)
        feat2 = Feature(MyCustomDataLoader(), random_seed=0)
        self.assertTrue(
            numpy.array_equal(feat1.input_sample, feat2.input_sample))
        self.assertTrue(numpy.array_equal(feat1.sampler(), feat2.sampler()))
Пример #8
0
 def test_dataset_mismatch_len(self):
     num = SAMPLE_SIZE_SMALL
     feat1 = Feature(generate_array_floats(n=num))
     feat2 = Feature(generate_array_floats(n=num * 2))
     self.assertRaises(AssertionError, lambda: DataSet([feat1, feat2]))