Пример #1
0
 def partial_digests_analysis(self, data, clones_observations):
     analysis = clones_observations.partial_digests_analysis()
     best = max(analysis, key=lambda a: analysis[a]["valid_clones"])
     if analysis[best]["valid_clones"] == analysis[()]["valid_clones"]:
         return {
             "message": "The partial digest analysis did not find any "
             "significant results",
             "success": "yeah!",
         }
     ax = clones_observations.plot_partial_digests_analysis(analysis)
     validations = analysis[best]["validations"]
     observations = ClonesObservations(
         clones_observations.clones,
         clones_observations.constructs_records,
         partial_cutters=best,
     )
     pdf_data = observations.plot_all_validations_patterns(validations)
     return {
         "pdf_file": {
             "data":
             data_to_html_data(pdf_data, "pdf"),
             "name":
             "digest_validation_assuming_partial_%s.pdf" % "_".join(best),
             "mimetype":
             "application/pdf",
         },
         "message":
         ("The analysis shows that the following enzyme(s) were"
          " possibly only partially cutting: %s. <br/>The report below"
          " shows the validation under this hypothesis.") %
         (", ".join(["<b>%s</b>" % b for b in best])),
         "figure_data":
         matplotlib_figure_to_svg_base64_data(ax.figure,
                                              bbox_inches="tight"),
         "success":
         "yeah!",
     }
Пример #2
0
 def partial_digests_analysis(self, data, clones_observations):
     analysis = clones_observations.partial_digests_analysis()
     best = max(analysis, key=lambda a: analysis[a]['valid_clones'])
     if analysis[best]['valid_clones'] == analysis[()]['valid_clones']:
         return {
             'message': 'The partial digest analysis did not find any '
             'significant results',
             'success': 'yeah!'
         }
     ax = clones_observations.plot_partial_digests_analysis(analysis)
     validations = analysis[best]['validations']
     observations = ClonesObservations(
         clones_observations.clones,
         clones_observations.constructs_records,
         partial_cutters=best)
     pdf_data = observations.plot_all_validations_patterns(validations)
     return {
         'pdf_file': {
             'data':
             data_to_html_data(pdf_data, 'pdf'),
             'name':
             'digest_validation_assuming_partial_%s.pdf' % "_".join(best),
             'mimetype':
             'application/pdf'
         },
         'message':
         ("The analysis shows that the following enzyme(s) were"
          " possibly only partially cutting: %s. <br/>The report below"
          " shows the validation under this hypothesis.") %
         (", ".join(["<b>%s</b>" % b for b in best])),
         'figure_data':
         matplotlib_figure_to_svg_base64_data(ax.figure,
                                              bbox_inches='tight'),
         'success':
         'yeah!'
     }
Пример #3
0
def test_complex_validation(tmpdir):
    data_dir = os.path.join('tests', 'test_data', 'complex_validation_data')
    records_path = os.path.join(data_dir, 'constructs_sequences.zip')
    constructs_map_path = os.path.join(data_dir, 'constructs_map.xls')
    digestions_map_path = os.path.join(data_dir, 'digestions_map.xls')
    aati_zip_path = os.path.join(data_dir, 'digestion_results.zip')
    clones = ClonesObservations.from_files(
        records_path=records_path,
        constructs_map_path=constructs_map_path,
        aati_zip_path=aati_zip_path,
        digestions_map_path=digestions_map_path
    )
    validations = clones.validate_all_clones(relative_tolerance=0.03)
    clones.plot_validations_plate_map(validations)
    clones.plot_all_validations_patterns(validations)
    partial_digest_analysis = clones.partial_digests_analysis()
    clones.plot_partial_digests_analysis(partial_digest_analysis)
    summary_table = clones.validations_summary_table(
        validations, target=os.path.join(str(tmpdir), 'table.csv'))
Пример #4
0
    def work(self):
        self.logger(message="Reading the files...")
        data = self.data

        # PARSE ALL FILES

        constructs_records = records_from_data_files(data.constructsSequences)
        if data.circularSequences:
            for record in constructs_records:
                record.linear = False
        constructs_records = {r.id: r for r in constructs_records}
        constructs_records = OrderedDict(sorted(constructs_records.items()))

        constructs_plate = plate_from_platemap_spreadsheet(
            file_to_filelike_object(data.constructsMap),
            file_type=file_type(data.constructsMap),
            data_field='construct',
            headers=True)
        constructs_map = OrderedDict([
            (well.name, well.data.construct)
            for well in constructs_plate.iter_wells(direction='row')
            if 'construct' in well.data and str(well.data.construct) != 'nan'
        ])
        unknown_constructs = {}
        for well, construct in constructs_map.items():
            if construct not in constructs_records:
                unknown_constructs[construct] = {
                    "well": well,
                    "suggestions": did_you_mean(construct, constructs_records)
                }
        if len(unknown_constructs):
            return {"success": False, "unknown_constructs": unknown_constructs}

        if data.uniqueDigestion:
            digestion = tuple(data.digestion)
            digestions_map = OrderedDict([(wellname, digestion)
                                          for wellname in constructs_map])
        else:
            digestions_plate = plate_from_platemap_spreadsheet(
                file_to_filelike_object(data.digestionsMap),
                file_type=file_type(data.digestionsMap),
                data_field='digestion',
                headers=True)
            digestions_map = OrderedDict([
                (well.name, tuple(well.data.digestion.split(', ')))
                for well in digestions_plate.iter_wells(direction='row') if
                'digestion' in well.data and str(well.data.digestion) != 'nan'
            ])

        archive = file_to_filelike_object(data.fragmentAnalysisArchive)

        # ANALYZE ALL FILES AND VALIDATE BANDS

        self.logger(message="Analyzing the data...")

        observations = BandsObservation.from_aati_fa_archive(
            archive, ignore_bands_under=data.ignoreBandsUnder)
        clones = Clone.from_bands_observations(observations, constructs_map,
                                               digestions_map)
        clones_observations = ClonesObservations(clones, constructs_records)
        if data.subanalysis == 'partial_digests':
            return self.partial_digests_analysis(data, clones_observations)
        else:
            return self.validation_analysis(data, clones_observations)
Пример #5
0
    def work(self):
        self.logger(message="Reading the files...")
        data = self.data

        # PARSE ALL FILES

        constructs_records = records_from_data_files(data.constructsSequences)
        for record in constructs_records:
            set_record_topology(record, data.topology)
        constructs_records = {r.id: r for r in constructs_records}
        constructs_records = OrderedDict(sorted(constructs_records.items()))

        constructs_plate = plate_from_platemap_spreadsheet(
            file_to_filelike_object(data.constructsMap),
            file_type=file_type(data.constructsMap),
            data_field="construct",
            headers=True,
        )
        constructs_map = OrderedDict([
            (well.name, well.data.construct)
            for well in constructs_plate.iter_wells(direction="row")
            if "construct" in well.data and str(well.data.construct) != "nan"
        ])
        unknown_constructs = {}
        for well, construct in constructs_map.items():
            if construct not in constructs_records:
                unknown_constructs[construct] = {
                    "well": well,
                    "suggestions": did_you_mean(construct, constructs_records),
                }
        if len(unknown_constructs):
            return {"success": False, "unknown_constructs": unknown_constructs}

        if data.uniqueDigestion:
            digestion = tuple(data.digestion)
            digestions_map = OrderedDict([(wellname, digestion)
                                          for wellname in constructs_map])
        else:
            digestions_plate = plate_from_platemap_spreadsheet(
                file_to_filelike_object(data.digestionsMap),
                file_type=file_type(data.digestionsMap),
                data_field="digestion",
                headers=True,
            )
            digestions_map = OrderedDict([
                (well.name, tuple(well.data.digestion.split(", ")))
                for well in digestions_plate.iter_wells(direction="row") if
                "digestion" in well.data and str(well.data.digestion) != "nan"
            ])

        archive = file_to_filelike_object(data.fragmentAnalysisArchive)

        # ANALYZE ALL FILES AND VALIDATE BANDS

        self.logger(message="Analyzing the data...")

        observations = BandsObservation.from_aati_fa_archive(
            archive,
            ignore_bands_under=data.ignoreBandsUnder,
            min_rfu_size_ratio=data.rfuSizeRatio,
        )
        clones = Clone.from_bands_observations(observations, constructs_map,
                                               digestions_map)
        clones_observations = ClonesObservations(clones, constructs_records)
        if data.subanalysis == "partial_digests":
            return self.partial_digests_analysis(data, clones_observations)
        else:
            return self.validation_analysis(data, clones_observations)
Пример #6
0
clones_map = {
    well.name: well.data.construct
    for well in clones_plate.iter_wells()
    if 'construct' in well.data
    and str(well.data.construct) != 'nan'
}
bands_observations = BandsObservation.from_aati_fa_archive(
    data_dir.aati_files_zip._path)

clones = {
    well_name: Clone(name=well_name, construct_id=clones_map[well_name],
                     digestions={("NcoI",): bands_observations[well_name]})
    for well_name, construct_id in clones_map.items()
}


# VALIDATE ALL CLONES WITH BANDWITCH
clones_observations = ClonesObservations(clones, constructs_dict)
validations = clones_observations.validate_all_clones(relative_tolerance=0.03)
validations_summary = clones_observations.validations_summary(validations)


# CREATE A FOLDER WITH VALIDATION REPORTS
report_root = flametree.file_tree('.').examples_output._dir('band_validation')
report_root._file('validations.pdf').write(
    clones_observations.plot_all_validations_patterns(validations)
)
ax = clones_observations.plot_validations_plate_map(validations)
ax.figure.savefig(report_root._file('success_map.pdf').open('wb'),
                  format='pdf', bbox_inches='tight')