Пример #1
0
def test_do_stage(mock_normalize):
    # tests that the normalized spectrum are assigned correctly.
    expected = 1
    # make a single order spectrum
    flux = np.arange(1, 101) * expected
    x = np.arange(1, 101)
    spectrum = Table({
        'wavelength': [x, 2 * x],
        'flux': [flux, 2 * flux],
        'blaze': [flux, 2 * flux],
        'blaze_error': [flux, 2 * flux],
        'uncertainty': [flux, 2 * flux],
        'fiber': [0, 0],
        'order': [1, 2]
    })
    image = NRESObservationFrame(
        [CCDData(np.zeros(
            (1, 1)), meta={'OBJECTS': 'tung&tung&none'})], 'test.fits')
    image.spectrum = Spectrum1D(spectrum)
    # make it so that ContinuumNormalizer.normalize just returns ones.
    mock_normalize.return_value = (expected * np.ones_like(flux),
                                   expected * np.ones_like(flux))

    # Run the normalizer code
    stage = ContinuumNormalizer(SimpleNamespace(db_address='foo'))
    image = stage.do_stage(image)
    for order in [1, 2]:
        assert np.allclose(image.spectrum[0, order]['normflux'], expected)
        assert np.allclose(image.spectrum[0, order]['normuncertainty'],
                           expected)
Пример #2
0
    def do_stage(self, image: NRESObservationFrame):
        if image.weights is None:
            logger.error('Extraction weights are missing. Rejecting image.',
                         image=image)
            return None
        if image.wavelengths is None:
            logger.error('Wavelengths are missing. Rejecting image.',
                         image=image)
            return None
        # consider adding a method to image, i.e. image.extracted_spectrum_shape.
        flux = np.zeros((image.num_traces, image.data.shape[1]), dtype=float)
        wavelength = np.zeros_like(flux, dtype=float)
        variance = np.zeros_like(flux, dtype=float)
        mask = np.zeros_like(flux, dtype=np.uint8)

        trace_ids = np.arange(1, image.num_traces + 1, dtype=int)
        for i, trace_id in enumerate(trace_ids):
            this_trace = get_trace_region(np.isclose(image.traces, trace_id))
            # get the horizontal (x) extent of the trace. Consider making this a get_extent function.
            x_extent = slice(np.min(this_trace[1]), np.max(this_trace[1]) + 1)
            flux[i, x_extent] = self.extract_order(image.data[this_trace],
                                                   image.weights[this_trace])
            variance[i, x_extent] = self.extract_order(
                image.uncertainty[this_trace]**2, image.weights[this_trace]**2)
            # TODO: some fix that allows for actual wavelength extraction:
            # wavelength[i, x_extent] = self.extract_order(image.wavelengths[this_trace],
            # weights=1/image.wavelengths[this_trace].shape[0])
            wavelength[i, x_extent] = np.median(image.wavelengths[this_trace],
                                                axis=0)

            mask[i, x_extent] = image.weights[this_trace].sum(axis=0) == 0.0

        image.spectrum = Spectrum1D({
            'id': trace_ids,
            'order': image.fibers['order'],
            'fiber': image.fibers['fiber'],
            'wavelength': wavelength,
            'flux': flux,
            'uncertainty': np.sqrt(variance),
            'blaze': image.blaze['blaze'],
            'blaze_error': image.blaze['blaze_error'],
            'mask': mask
        })
        return image
Пример #3
0
def test_do_stage_does_not_fit_non_science_fiber():
    # make a single order spectrum
    flux = np.arange(1, 101) * 2
    x = np.arange(1, 101)
    spectrum = Table({
        'wavelength': [x],
        'flux': [flux],
        'blaze': [flux],
        'blaze_error': [flux],
        'uncertainty': [flux],
        'fiber': [1],
        'order': [1]
    })
    image = NRESObservationFrame(
        [CCDData(np.zeros(
            (1, 1)), meta={'OBJECTS': 'tung&tung&none'})], 'test.fits')
    image.spectrum = Spectrum1D(spectrum)

    # Run the normalizer code
    stage = ContinuumNormalizer(SimpleNamespace(db_address='foo'))
    image = stage.do_stage(image)
    assert 'normflux' not in image.spectrum._table.colnames
    assert 'normuncertainty' not in image.spectrum._table.colnames
Пример #4
0
def test_rv(mock_loader, mock_db):
    # parameters that define the test data
    num_orders = 5
    lam_per_order = 70
    res = 0.1
    # Make fake data
    test_wavelengths = np.arange(4500.0,
                                 4500 + num_orders * lam_per_order + 100, res)
    flux = np.ones(test_wavelengths.shape) * 1000

    read_noise = 10.0
    # add in fake lines
    for i in range(1000):
        central_wavelength = np.random.uniform() * 2000.0 + 4500.0
        width = 0.1  # angstroms
        sigma = width / 2 / np.sqrt(2.0 * np.log(2.0))
        flux += gaussian(test_wavelengths, central_wavelength,
                         sigma) * 10000.0 * np.random.uniform()

    noisy_flux = np.random.poisson(flux).astype(float)
    noisy_flux += np.random.normal(0.0, read_noise, size=len(flux))
    uncertainty = np.sqrt(flux + read_noise**2.0)

    class MockLoader:
        def load(self, *args):
            return {'wavelength': test_wavelengths, 'flux': flux}

    mock_loader.return_value = MockLoader()
    true_v = 1.205 * units.km / units.s

    # Make the fake image
    # Set the site to the north pole, and the ra and dec to the ecliptic pole. The time we chose is just
    # to minimize the rv correction
    header = fits.Header({
        'DATE-OBS': '2020-09-12T00:00:00.000000',
        'RA': '18:00:00',
        'DEC': '+66:33:32.8178',
        'OBJECTS': 'foo&none&none',
        'EXPTIME': 1200.0
    })
    site_info = {'longitude': 0.0, 'latitude': 90.0, 'elevation': 0.0}

    # Each NRES order is ~70 Angstroms wide
    spectrum = []
    dx = int(lam_per_order / res)
    for i in range(5):
        order = slice(i * dx, (i + 1) * dx, 1)
        row = {
            'wavelength':
            test_wavelengths[order] * (1.0 + true_v / constants.c),
            'normflux': noisy_flux[order],
            'normuncertainty': uncertainty[order],
            'fiber': 0,
            'order': i
        }
        spectrum.append(row)
    image = NRESObservationFrame([CCDData(np.zeros((1, 1)), meta=header)],
                                 'test.fits')
    image.spectrum = Spectrum1D(spectrum)
    image.instrument = SimpleNamespace()
    image.instrument.site = 'npt'
    # Classification just can't be None so that the stage does not abort.
    image.classification = SimpleNamespace(**{
        'T_effective': 5000.0,
        'log_g': 0.0,
        'metallicity': 0.0,
        'alpha': 0.0
    })
    mock_db.return_value = SimpleNamespace(**site_info)

    # Run the RV code
    stage = RVCalculator(
        SimpleNamespace(db_address='foo',
                        MIN_ORDER_TO_CORRELATE=0,
                        MAX_ORDER_TO_CORRELATE=num_orders - 1))
    image = stage.do_stage(image)
    # Assert that the true_v + rv_correction is what is in the header within 5 m/s
    assert np.abs(
        true_v.to('m / s').value + image.meta['BARYCORR'] -
        image.meta['RV']) < 5.0