Пример #1
0
    def merge_checkpoint_benchmark_results(checkpoint_dir):
        checkpoint_files = glob.glob(os.path.join(checkpoint_dir,
                                                  "**/*.ckpnt"),
                                     recursive=True)
        merged_result = BenchmarkResult()
        # merge all checkpoints with new results
        for checkpoint_file in checkpoint_files:
            logging.info("Loading checkpoint {}".format(
                os.path.abspath(checkpoint_file)))
            next_result = BenchmarkResult.load(os.path.abspath(checkpoint_file), \
                load_configs=True, load_histories=True)
            merged_result.extend(next_result)
        # dump merged result
        if len(merged_result.get_result_dict()) > 0:
            logging.info("Dumping merged result")
            merged_result_filename = os.path.join(checkpoint_dir,
                                                  "merged_results.ckpnt")
            merged_result.dump(merged_result_filename, \
                dump_configs=True, dump_histories=True)

        # delete checkpoints
        for checkpoint_file in checkpoint_files:
            if checkpoint_file == merged_result_filename:
                continue
            os.remove(checkpoint_file)
            logging.info(
                "Removed old checkpoint file {}".format(checkpoint_file))
        return merged_result
Пример #2
0
    def test_dump_and_partial_load(self):
        result_num = 100
        confs, result_data, histories = random_benchmark_conf_data(result_num, 2000000, hist_size=1500000)
        br = BenchmarkResult(result_dict=result_data,
          benchmark_configs=confs, histories=histories)
        br.dump("./results_all", dump_configs=True, dump_histories=True, max_mb_per_file = 5)
        br_loaded = BenchmarkResult.load("./results_all")
        loaded_dict = br_loaded.get_result_dict()
        self.assertEqual(br.get_result_dict(), loaded_dict)

        loaded_configs_idx = list(range(10, 20))
        processed_files = br_loaded.load_benchmark_configs(config_idx_list = loaded_configs_idx)
        loaded_confs = br_loaded.get_benchmark_configs()
        self.assertEqual(len(loaded_confs), 10)
        # 2mb per conf, max 5 mb per file -> 2 confs per file -> 10/2 = 5files
        self.assertEqual(len(processed_files), 5) 
        for conf_idx in loaded_configs_idx:
            self.assertEqual(br_loaded.get_benchmark_config(conf_idx), confs[conf_idx])

        loaded_configs_idx = list(range(10, 27))
        processed_files = br_loaded.load_histories(config_idx_list = loaded_configs_idx)
        loaded_histories = br_loaded.get_histories()
        self.assertEqual(len(loaded_histories), 18) # one more as specified since it was in the last file
        # 1.5mb per history, max 5 mb per file -> 3 confs per file -> 17/3 = 6files
        self.assertEqual(len(processed_files), 6)
        for conf_idx in loaded_configs_idx:
            self.assertEqual(br_loaded.get_history(conf_idx), histories[conf_idx])
Пример #3
0
    def run(self, viewer=None, maintain_history=False, checkpoint_every=None):
        results = []
        histories = {}
        for idx, bmark_conf in enumerate(self.configs_to_run):
            self.logger.info(
                "Running config idx {} being {}/{}: Scenario {} of set \"{}\" for behavior \"{}\""
                .format(bmark_conf.config_idx, idx,
                        len(self.benchmark_configs) - 1,
                        bmark_conf.scenario_idx, bmark_conf.scenario_set_name,
                        bmark_conf.behavior_config.behavior_name))
            bmark_conf = copy.deepcopy(
                bmark_conf) if self._deepcopy else bmark_conf
            result_dict, scenario_history = self._run_benchmark_config(
                bmark_conf, viewer, maintain_history)
            results.append(result_dict)
            histories[bmark_conf.config_idx] = scenario_history
            if self.log_eval_avg_every and (idx +
                                            1) % self.log_eval_avg_every == 0:
                self._log_eval_average(results, self.configs_to_run)

            if checkpoint_every and (idx + 1) % checkpoint_every == 0:
                intermediate_result = BenchmarkResult(results, \
                         self.configs_to_run[0:idx+1], histories=histories)
                checkpoint_file = os.path.join(self.checkpoint_dir,
                                               self.get_checkpoint_file_name())
                intermediate_result.dump(checkpoint_file,
                                         dump_configs=True,
                                         dump_histories=maintain_history)
                self.logger.info("Saved checkpoint {}".format(checkpoint_file))
        benchmark_result = BenchmarkResult(results,
                                           self.configs_to_run,
                                           histories=histories)
        self.existing_benchmark_result.extend(benchmark_result)
        return self.existing_benchmark_result
Пример #4
0
 def test_dump_and_load_results(self):
     result_data = random_result_data(size = 10)
     br = BenchmarkResult(result_dict=result_data)
     br.dump("./results")
     br_loaded = BenchmarkResult.load("./results")
     loaded_dict = br_loaded.get_result_dict()
     self.assertEqual(result_data, loaded_dict)
Пример #5
0
 def test_dump_and_load_benchmark_configs(self):
     result_num = 100
     confs, result_data, _ = random_benchmark_conf_data(result_num, 2000000)
     br = BenchmarkResult(result_dict=result_data, benchmark_configs=confs)
     br.dump("./results_with_confs", dump_configs=True, max_mb_per_file = 5)
     br_loaded = BenchmarkResult.load("./results_with_confs")
     br_loaded.load_benchmark_configs(config_idx_list = list(range(0, result_num)))
     loaded_confs = br_loaded.get_benchmark_configs()
     self.assertEqual(confs, loaded_confs)
     loaded_dict = br_loaded.get_result_dict()
     self.assertEqual(br.get_result_dict(), loaded_dict)
Пример #6
0
 def test_dump_and_load_histories_one(self):
     result_num = 2
     result_data = random_result_data(size = result_num)
     histories = random_history_data(result_num, 20)
     br = BenchmarkResult(result_dict=result_data, histories=histories)
     br.dump("./results_with_history", dump_histories=True, max_mb_per_file = 2)
     br_loaded = BenchmarkResult.load("./results_with_history")
     br_loaded.load_histories(config_idx_list = list(histories.keys()))
     loaded_histories = br_loaded.get_histories()
     self.assertEqual(histories, loaded_histories)
     loaded_dict = br_loaded.get_result_dict()
     self.assertEqual(result_data, loaded_dict)
Пример #7
0
    def run(self, viewer=None, maintain_history=False, checkpoint_every=None):
        last_results = []
        last_histories = {}
        last_run_configs = []
        results = []
        checkpoint_file = os.path.abspath(os.path.join(self.checkpoint_dir, self.get_checkpoint_file_name()))
        last_result_file = os.path.abspath(os.path.join(self.checkpoint_dir, "tmp_{}".format(self.get_checkpoint_file_name())))
        checkpoint_result = BenchmarkResult(file_name=checkpoint_file)
        for idx, bmark_conf in enumerate(self.configs_to_run):
            self.logger.info("Running config idx {} being {}/{}: Scenario {} of set \"{}\" for behavior \"{}\"".format(
                bmark_conf.config_idx, idx, len(self.benchmark_configs) - 1, bmark_conf.scenario_idx,
                bmark_conf.scenario_set_name, bmark_conf.behavior_config.behavior_name))
            bmark_conf = copy.deepcopy(bmark_conf) if self._deepcopy else bmark_conf
            result_dict, scenario_history = self._run_benchmark_config(bmark_conf, viewer,
                                                                       maintain_history)
            results.append(result_dict)
            last_results.append(result_dict)
            last_histories[bmark_conf.config_idx] = scenario_history
            last_run_configs.append(bmark_conf)
            if self.log_eval_avg_every and (idx + 1) % self.log_eval_avg_every == 0:
                self._log_eval_average(results, self.configs_to_run)

            if checkpoint_every and (idx+1) % checkpoint_every == 0:
                # append results since last checkpoint
                last_benchmark_result = BenchmarkResult(result_dict=last_results, file_name = last_result_file, \
                         benchmark_configs=last_run_configs, histories=last_histories)
                last_benchmark_result.dump(last_result_file, dump_configs=True, dump_histories=maintain_history, append=False)
                checkpoint_result.extend(benchmark_result=last_benchmark_result, file_level=True)
                self.logger.info("Extended checkpoint {} with last result.".format(checkpoint_file))
                last_histories.clear()
                last_run_configs.clear()
                last_results.clear()
        # append results of last run
        last_benchmark_result = BenchmarkResult(result_dict=last_results, file_name = last_result_file, \
                         benchmark_configs=last_run_configs, histories=last_histories)
        last_benchmark_result.dump(last_result_file, dump_configs=True, dump_histories=maintain_history, append=False)
        checkpoint_result.extend(benchmark_result=last_benchmark_result, file_level=True)
        os.remove(last_result_file)
        self.logger.info("Extended checkpoint {} with final result.".format(checkpoint_file))
        checkpoint_result.extend(benchmark_result=self.existing_benchmark_result, file_level=True)
        return checkpoint_result
Пример #8
0
    def test_extend_from_file(self):
        try:
          os.remove("./br1")
          os.remove("./br2")
          os.remove("./br3")
        except:
          pass
        result_num = 100
        confs, result_data, histories1 = random_benchmark_conf_data(result_num, 2000000, hist_size=1500000, offset=0)
        br1 = BenchmarkResult(result_dict=result_data,
          benchmark_configs=confs, histories=histories1)
        br1.dump("./br1", dump_histories=True, dump_configs=True)
        br1_df = br1.get_data_frame().copy()

        result_num = 30
        confs2, result_data2, histories2 = random_benchmark_conf_data(result_num, 2000000, hist_size=1500000, offset=200)
        br2 = BenchmarkResult(result_dict=result_data2,
          benchmark_configs=confs2, histories=histories2)
        br2.dump(filename="./br2", dump_histories=True, dump_configs=True)

        result_num = 10
        confs3, result_data3, histories3 = random_benchmark_conf_data(result_num, 2000000, hist_size=1500000, offset=400)
        br3 = BenchmarkResult(result_dict=result_data3,
          benchmark_configs=confs3, histories=histories3)
        br3.dump(filename="./br3", dump_histories=True, dump_configs=True)

        br1.extend(benchmark_result=br2, file_level=True)
        br1.extend(benchmark_result=br3, file_level=True)

        br_loaded = BenchmarkResult.load("./br1", load_histories=True, load_configs=True)
        df_desired = br1_df
        df_desired = pd.concat([df_desired, br2.get_data_frame()])
        df_desired = pd.concat([df_desired, br3.get_data_frame()])
        self.assertEqual(len(br_loaded.get_data_frame().index), len(df_desired.index))

        extended_confs = br_loaded.get_benchmark_configs()
        self.assertEqual(len(extended_confs), 140)
        extended_histories = br_loaded.get_histories()
        self.assertEqual(len(extended_histories), 140)
        extended_histories = histories1
        extended_histories.update(histories2)
        extended_histories.update(histories3)
        for bc in extended_confs:
            self.assertEqual(br_loaded.get_history(bc.config_idx), extended_histories[bc.config_idx])