Пример #1
0
    def test_one_agent_at_goal_state_limits(self):
        param_server = ParameterServer()
        # Model Definition
        behavior_model = BehaviorConstantVelocity(param_server)
        execution_model = ExecutionModelInterpolate(param_server)
        dynamic_model = SingleTrackModel(param_server)

        # Agent Definition
        agent_2d_shape = CarLimousine()
        init_state = np.array(
            [0, -191.789, -50.1725, 3.14 * 3.0 / 4.0, 150 / 3.6])
        agent_params = param_server.AddChild("agent1")
        goal_polygon = Polygon2d(
            [0, 0, 0],
            [Point2d(-1, -1),
             Point2d(-1, 1),
             Point2d(1, 1),
             Point2d(1, -1)])
        goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725))

        agent = Agent(
            init_state, behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params,
            GoalDefinitionStateLimits(
                goal_polygon,
                (3.14 * 3.0 / 4.0 - 0.08, 3.14 * 3.0 / 4.0 + 0.08)), None)

        world = World(param_server)
        world.AddAgent(agent)
        evaluator = EvaluatorGoalReached(agent.id)
        world.AddEvaluator("success", evaluator)

        info = world.Evaluate()
        self.assertEqual(info["success"], True)
Пример #2
0
  def test_planning_time(self):
    param_server = ParameterServer()
    # Model Definition
    behavior_model = BehaviorConstantAcceleration(param_server)
    execution_model = ExecutionModelInterpolate(param_server)
    dynamic_model = SingleTrackModel(param_server)

    # Agent Definition
    agent_2d_shape = CarLimousine()
    init_state = np.array([0, -191.789,-50.1725, 3.14*3.0/4.0, 150/3.6])
    agent_params = param_server.AddChild("agent1")
    goal_polygon = Polygon2d([0, 0, 0],
                             [Point2d(-4,-4),
                              Point2d(-4,4),
                              Point2d(4,4),
                              Point2d(4,-4)])
    goal_polygon = goal_polygon.Translate(Point2d(-191.789,-50.1725))

    agent = Agent(init_state,
                behavior_model,
                dynamic_model,
                execution_model,
                agent_2d_shape,
                agent_params,
                GoalDefinitionPolygon(goal_polygon),
                  None)

    world = World(param_server)
    world.AddAgent(agent)
    evaluator = EvaluatorPlanningTime(agent.id)
    world.AddEvaluator("time", evaluator)


    info = world.Evaluate()
    self.assertEqual(info["time"], 0.0)
Пример #3
0
    def test_number_of_agents(self):
        # World Definition
        params = ParameterServer()
        world = World(params)

        # Model Definitions
        behavior_model = BehaviorConstantAcceleration(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantAcceleration(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        agent_2d_shape = CarLimousine()
        init_state = np.array([0, 13, -1.75, 0, 5])
        agent_params = params.AddChild("agent1")
        goal_polygon = Polygon2d(
            [1, 1, 0],
            [Point2d(0, 0),
             Point2d(0, 2),
             Point2d(2, 2),
             Point2d(2, 0)])
        goal_polygon = goal_polygon.Translate(Point2d(50, -2))

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 16, -1.75, 0, 5])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent2)

        evaluator = EvaluatorNumberOfAgents(agent.id)
        world.AddEvaluator("num_agents", evaluator)

        info = world.Evaluate()
        self.assertEqual(info["num_agents"], len(world.agents))
        # do it once more
        self.assertEqual(info["num_agents"], len(world.agents))

        world.RemoveAgentById(agent2.id)
        info = world.Evaluate()
        # evaluator should still hold two
        self.assertNotEqual(info["num_agents"], len(world.agents))
        self.assertEqual(info["num_agents"], 2)

        world.Step(0.1)
        info = world.Evaluate()
        # evaluator should still hold two
        self.assertEqual(info["num_agents"], 2)
Пример #4
0
  def test_one_agent_at_goal_sequential(self):
    param_server = ParameterServer()
    # Model Definition
    dynamic_model = SingleTrackModel(param_server)
    behavior_model = BehaviorMPContinuousActions(param_server)
    idx = behavior_model.AddMotionPrimitive(np.array([1, 0]))
    behavior_model.ActionToBehavior(idx)
    execution_model = ExecutionModelInterpolate(param_server)


    # Agent Definition
    agent_2d_shape = CarLimousine()
    init_state = np.array([0, 0, 0, 0, 0])
    agent_params = param_server.AddChild("agent1")
    goal_frame = Polygon2d([0, 0, 0],
                             [Point2d(-1,-1),
                              Point2d(-1,1),
                              Point2d(1,1),
                              Point2d(1,-1)])

    goal_polygon1 = goal_frame.Translate(Point2d(10, 0))
    goal_polygon2 = goal_frame.Translate(Point2d(20, 0))
    goal_polygon3 = goal_frame.Translate(Point2d(30, 0))

    goal_def1 = GoalDefinitionStateLimits(goal_polygon1, [-0.08, 0.08])
    goal_def2 = GoalDefinitionStateLimits(goal_polygon2, [-0.08, 0.08])
    goal_def3 = GoalDefinitionStateLimits(goal_polygon3, [-0.08, 0.08])

    goal_definition = GoalDefinitionSequential([goal_def1,
                                                goal_def2,
                                                goal_def3])

    self.assertEqual(len(goal_definition.sequential_goals),3)
    agent = Agent(init_state,
                behavior_model,
                dynamic_model,
                execution_model,
                agent_2d_shape,
                agent_params,
                goal_definition,
                  None)

    world = World(param_server)
    world.AddAgent(agent)
    evaluator = EvaluatorGoalReached(agent.id)
    world.AddEvaluator("success", evaluator)

    # just drive with the single motion primitive should be successful 
    for _ in range(0,1000):
        world.Step(0.2)
        info = world.Evaluate()
        if info["success"]:
            break
    
    self.assertEqual(info["success"], True)
    self.assertAlmostEqual(agent.state[int(StateDefinition.X_POSITION)], 30, delta=0.5)
Пример #5
0
    def test_gap_distance_front(self):
        # World Definition
        params = ParameterServer()
        world = World(params)

        gap = 10

        # Model Definitions
        behavior_model = BehaviorConstantAcceleration(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantAcceleration(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        agent_2d_shape = CarLimousine()
        init_state = np.array([0, 13, -1.75, 0, 5])
        agent_params = params.AddChild("agent1")
        goal_polygon = Polygon2d(
            [1, 1, 0],
            [Point2d(0, 0),
             Point2d(0, 2),
             Point2d(2, 2),
             Point2d(2, 0)])
        goal_polygon = goal_polygon.Translate(Point2d(50, -2))

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 13 + gap, -1.75, 0, 5])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent2)

        world.Step(0.1)

        evaluator = EvaluatorGapDistanceFront(agent.id)
        world.AddEvaluator("gap", evaluator)

        info = world.Evaluate()
        self.assertAlmostEqual(info["gap"],
                               gap - agent_2d_shape.front_dist -
                               agent_2d_shape.rear_dist,
                               places=4)
Пример #6
0
    def __init__(self, init_state, goal_polygon, map_interface, params):

        behavior_model = BehaviorConstantAcceleration(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)
        agent_2d_shape = CarLimousine()

        agent_params = params.AddChild("agent")
        super(TestAgent,
              self).__init__(init_state, behavior_model, dynamic_model,
                             execution_model, agent_2d_shape, agent_params,
                             GoalDefinitionPolygon(goal_polygon),
                             map_interface)
Пример #7
0
    def setUp(self):
        param_server = ParameterServer()
        world = World(param_server)

        self.defaults = dict()
        self.defaults["world"] = world
        self.defaults["ego_behavior"] = BehaviorConstantAcceleration(
            param_server)
        self.defaults["ego_dynamic"] = SingleTrackModel(param_server)
        self.defaults["ego_execution"] = ExecutionModelInterpolate(
            param_server)
        self.defaults["ego_shape"] = CarLimousine()
        self.defaults["other_behavior"] = BehaviorConstantAcceleration(
            param_server)
        self.defaults["other_dynamic"] = SingleTrackModel(param_server)
        self.defaults["other_execution"] = ExecutionModelInterpolate(
            param_server)
        self.defaults["other_shape"] = CarLimousine()
        self.defaults["agent_params"] = param_server.addChild("agent")
        self.defaults["default_vehicle_dynamics"] = [
            1.7, -1.7, -1.69, -1.67, 0.2, -0.8, 0.1, 1.
        ]
Пример #8
0
    def test_draw_agents(self):
        params = ParameterServer()
        behavior = BehaviorConstantAcceleration(params)
        execution = ExecutionModelInterpolate(params)
        dynamic = SingleTrackModel(params)
        shape = Polygon2d([1.25, 1, 0], [
            Point2d(0, 0),
            Point2d(0, 2),
            Point2d(4, 2),
            Point2d(4, 0),
            Point2d(0, 0)
        ])
        shape2 = CarLimousine()

        init_state = [0, 3, 2, 1]
        init_state2 = [0, 0, 5, 4]

        agent = Agent(init_state, behavior, dynamic, execution, shape,
                      params.AddChild("agent"))
        agent2 = Agent(init_state2, behavior, dynamic, execution, shape2,
                       params.AddChild("agent"))
Пример #9
0
    def test_one_agent_at_goal_state_limits_frenet(self):
        param_server = ParameterServer()
        # Model Definition
        behavior_model = BehaviorConstantVelocity(param_server)
        execution_model = ExecutionModelInterpolate(param_server)
        dynamic_model = SingleTrackModel(param_server)

        # Agent Definition
        agent_2d_shape = CarLimousine()
        agent_params = param_server.AddChild("agent1")

        center_line = Line2d()
        center_line.AddPoint(Point2d(5.0, 5.0))
        center_line.AddPoint(Point2d(10.0, 10.0))
        center_line.AddPoint(Point2d(20.0, 10.0))

        max_lateral_dist = (0.4, 1)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (20.0, 25.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        # not at goal x,y, others yes
        agent1 = Agent(np.array([0, 6, 8, 3.14 / 4.0, velocity_range[0]]),
                       behavior_model, dynamic_model, execution_model,
                       agent_2d_shape, agent_params, goal_definition, None)

        # at goal x,y and others
        agent2 = Agent(np.array([0, 5.0, 5.5, 3.14 / 4.0, velocity_range[1]]),
                       behavior_model, dynamic_model, execution_model,
                       agent_2d_shape, agent_params, goal_definition, None)

        # not at goal x,y,v yes but not orientation
        agent3 = Agent(
            np.array(
                [0, 5, 5.5, 3.14 / 4.0 + max_orientation_diff[1] + 0.001,
                 20]), behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params, goal_definition, None)

        # not at goal x,y, orientation but not v
        agent4 = Agent(
            np.array([
                0, 5, 4.5, 3.14 / 4 - max_orientation_diff[0],
                velocity_range[0] - 0.01
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # at goal x,y, at lateral limit
        agent5 = Agent(
            np.array([
                0, 15, 10 - max_lateral_dist[0] + 0.05, 0, velocity_range[1]
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # not at goal x,y slightly out of lateral limit
        agent6 = Agent(
            np.array([
                0, 15, 10 + max_lateral_dist[0] + 0.05,
                3.14 / 4 + max_orientation_diff[0], velocity_range[0]
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # not at goal x,y,v yes but not orientation
        agent7 = Agent(
            np.array(
                [0, 5, 5.5, 3.14 / 4.0 - max_orientation_diff[0] - 0.001,
                 20]), behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params, goal_definition, None)

        world = World(param_server)
        world.AddAgent(agent1)
        world.AddAgent(agent2)
        world.AddAgent(agent3)
        world.AddAgent(agent4)
        world.AddAgent(agent5)
        world.AddAgent(agent6)
        world.AddAgent(agent7)

        evaluator1 = EvaluatorGoalReached(agent1.id)
        evaluator2 = EvaluatorGoalReached(agent2.id)
        evaluator3 = EvaluatorGoalReached(agent3.id)
        evaluator4 = EvaluatorGoalReached(agent4.id)
        evaluator5 = EvaluatorGoalReached(agent5.id)
        evaluator6 = EvaluatorGoalReached(agent6.id)
        evaluator7 = EvaluatorGoalReached(agent7.id)
        world.AddEvaluator("success1", evaluator1)
        world.AddEvaluator("success2", evaluator2)
        world.AddEvaluator("success3", evaluator3)
        world.AddEvaluator("success4", evaluator4)
        world.AddEvaluator("success5", evaluator5)
        world.AddEvaluator("success6", evaluator6)
        world.AddEvaluator("success7", evaluator7)

        info = world.Evaluate()
        self.assertEqual(info["success1"], False)
        self.assertEqual(info["success2"], True)
        self.assertEqual(info["success3"], False)
        self.assertEqual(info["success4"], False)
        self.assertEqual(info["success5"], True)
        self.assertEqual(info["success6"], False)
        self.assertEqual(info["success7"], False)