if __name__ == "__main__": pfn, dir_name, file = setup(__file__) r = True models = [ PowerBeutler2017(recon=r, smooth_type="hinton2017", name="Hinton2017"), PowerBeutler2017(recon=r, smooth_type="eh1998", name="EH1998") ] data = PowerSpectrum_SDSS_DR12_Z061_NGC(name="Recon mean", recon=r, min_k=0.02, max_k=0.30) sampler = DynestySampler(temp_dir=dir_name) fitter = Fitter(dir_name) fitter.add_model_and_dataset(models[0], data, name="Hinton2017") fitter.add_model_and_dataset(models[1], data, name="EH1998") fitter.set_sampler(sampler) fitter.set_num_walkers(10) fitter.fit(file) if fitter.should_plot(): from chainconsumer import ChainConsumer c = ChainConsumer() pks = {} for posterior, weight, chain, model, data, extra in fitter.load(): c.add_chain(chain, weights=weight, parameters=model.get_labels(),
import sys sys.path.append("..") from barry.samplers import DynestySampler from barry.cosmology.camb_generator import getCambGenerator from barry.postprocessing import BAOExtractor from barry.config import setup from barry.models import PowerSeo2016, PowerBeutler2017, PowerDing2018, PowerNoda2019 from barry.datasets import PowerSpectrum_SDSS_DR12_Z061_NGC from barry.fitter import Fitter import numpy as np import pandas as pd if __name__ == "__main__": pfn, dir_name, file = setup("../config/pk_individual.py") fitter = Fitter(dir_name, save_dims=2, remove_output=False) c = getCambGenerator() r_s = c.get_data()[0] p = BAOExtractor(r_s) sampler = DynestySampler(temp_dir=dir_name, nlive=200) for r in [True, False]: t = "Recon" if r else "Prerecon" ls = "-" if r else "--" d = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, realisation=0) de = PowerSpectrum_SDSS_DR12_Z061_NGC(recon=r, postprocess=p, realisation=0)
import os import numpy as np import pandas as pd from scipy.interpolate import interp1d sys.path.append("..") from barry.config import setup from barry.models import CorrBeutler2017, CorrDing2018, CorrSeo2016 from barry.datasets import CorrelationFunction_SDSS_DR12_Z061_NGC from barry.samplers import DynestySampler from barry.fitter import Fitter if __name__ == "__main__": pfn, dir_name, file = setup(__file__) sampler = DynestySampler(temp_dir=dir_name, nlive=1000) fitter = Fitter(dir_name, remove_output=False) cs = ["#262232", "#116A71", "#48AB75", "#D1E05B"] for r in [True, False]: t = "Recon" if r else "Prerecon" ls = "-" if r else "--" d = CorrelationFunction_SDSS_DR12_Z061_NGC(recon=r) # Fix sigma_nl for one of the Beutler models model = CorrBeutler2017() sigma_nl = 6.0 if r else 9.3 model.set_default("sigma_nl", sigma_nl) model.set_fix_params(["om", "sigma_nl"]) fitter.add_model_and_dataset(CorrBeutler2017(), d, name=f"Beutler 2017 {t}", linestyle=ls, color=cs[0]) fitter.add_model_and_dataset(model, d, name=f"Beutler 2017 Fixed $\\Sigma_{{nl}}$ {t}", linestyle=ls, color=cs[0])
sys.path.append("../..") from barry.samplers import DynestySampler from barry.config import setup from barry.models import PowerBeutler2017 from barry.datasets.dataset_power_spectrum import PowerSpectrum_DESIMockChallenge_Post from barry.fitter import Fitter import numpy as np import pandas as pd from barry.models.model import Correction from barry.utils import weighted_avg_and_cov, break_vector_and_get_blocks import matplotlib as plt from matplotlib import cm if __name__ == "__main__": pfn, dir_name, file = setup(__file__) fitter = Fitter(dir_name, remove_output=True) sampler = DynestySampler(temp_dir=dir_name, nlive=500) names = [ "PostRecon Yuyu NonFix ", "PostRecon Yuyu NonFix ", ] cmap = plt.cm.get_cmap("viridis") smoothtypes = [1, 2, 3, 4] # [5, 10, 15, 20] Mpc/h kmaxs = [0.15, 0.20, 0.25, 0.30] allnames = [] counter = 0 fit_poles = [0, 2, 4]