def __init__(self, input_shape, output_shape, owner_name=""): super(FCNet, self).__init__(input_shape, output_shape, owner_name) x = input_shape self.model = nn.Sequential(BaseN.Flatten(), nn.Linear(np.prod(x), 1024), nn.Softplus(), nn.Linear(1024, 512), nn.Tanh(), nn.Linear(512, 256), BaseN.EigenLayer(256, self.output_shape[0])) self.compile()
def __init__(self, input_shape, output_shape, **kwargs): super(ConvNetMNIST, self).__init__(**kwargs) self.n = output_shape self.conv = [BaseN.ResNetBlock(1, 32), BaseN.conv3_2(32, 64)] x = BaseN.output_shape(self.conv[0], input_shape) self.model = nn.Sequential(self.conv[0], nn.Softplus(), BaseN.Flatten(), nn.Linear(np.prod(x), 512), nn.Linear(512, 256), nn.Tanh(), BaseN.EigenLayer(256, self.output_shape[0])) self.compile()
def __init__(self, input_shape, output_shape, owner_name=""): super(FCSpectralMNet, self).__init__(input_shape, output_shape, owner_name) x = input_shape self.model = nn.Sequential(BaseN.Flatten(), nn.Linear(np.prod(x), 1024), nn.ReLU(), nn.Linear(1024, 1024), nn.ReLU(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, self.output_shape[0] - 1), nn.Tanh(), BaseN.EigenLayer()) self.compile()
def __init__(self, input_shape, output_shape, owner_name=""): super(ConvNet, self).__init__(input_shape, output_shape, owner_name) self.conv = [ nn.Sequential(BaseN.conv3_2(input_shape[0], 8), nn.ReLU(), BaseN.conv3_2(8, 16), nn.ReLU(), BaseN.conv3_2(8, 8)) ] x = BaseN.output_shape(self.conv[0], input_shape) self.model = nn.Sequential( self.conv[0], BaseN.Flatten(), nn.Linear(np.prod(x), 512), BaseN.AdaptiveTanh(), nn.Linear(512, 256), BaseN.EigenLayer(256, self.output_shape[0], bias=False)) self.compile()
def __init__(self, input_shape, output_shape, owner_name=""): super(ConvNetBigAtari, self).__init__(input_shape, output_shape, owner_name) self.conv = [ nn.Sequential(BaseN.conv3_2(input_shape[0], 8), nn.Softplus(), BaseN.conv3_2(8, 16), BaseN.conv3_2(16, 32)) ] x = BaseN.output_shape(self.conv[0], input_shape) self.model = nn.Sequential( self.conv[0], BaseN.Flatten(), nn.Linear(np.prod(x), 512), nn.Linear(512, 512), nn.Tanh(), nn.Linear(512, 1024), BaseN.EigenLayer(1024, self.output_shape[0])) self.compile()