def __init__(self, growth_type='orig'): Kernel.__init__(self) self.L = 0.0 self.U = 10.0 self.T = range(5) self.name = 'EED' self.time_independent = True self.survival_params = [ 1.34, 0.92 ] self.growth_params = [ 0.37, 0.73, 0.127, 0.23 ] self.fecundity_params = [ 0.034, 0.038 ] if growth_type == 'slow': self.growth_params = [ 0.0, 1.01, 0.005, 0.001 ] self.name = 'EEDSlow' self.discontinuities = [ 0.15, 0.25 ]
def __init__(self, **kwargs): Kernel.__init__(self) self.L = 1.0 self.U = 150.0 self.T = range(5) self.name = 'Zuidema' self.time_dependent = False # parashorea chinensis self.survival_params = [ 0.98 ] self.growth_params = [ 42.1, 144.0, 2.258, 0.1054 ] # a, b, c, sd self.k_st_params = [ -3.232, 0.146, 0.829 ] # b, mu, sdl self.k_ts_params = [ 0.118, 1.078, 0.369 ] # a54, mu, sd self.k_ss = asarray([[ 0.700, 0.0, 0.0, 0.0 ], [ 0.101, 0.704, 0.0, 0.0 ], [ 0.0, 0.136, 0.793, 0.0 ], [ 0.0, 0.0, 0.096, 0.819 ]])
def __init__(self): Kernel.__init__(self) self.time_dependent = True # read climate data and measurements (cm^2) climate = read_csv('kernels/artr/climate.csv') measurements = read_csv('kernels/artr/survivalDataARTR.csv') years = sorted(list(set([ int(x.year) for x in measurements ]))) fecundity_measurements = read_csv('kernels/artr/fecdat.csv') log_areas = {} for year in years: log_areas[year] = [ float(x.logArea) for x in measurements if int(x.year) == year ] # set attributes self.n0 = log_areas[years[0]] self.log_areas = log_areas self.years = years self.climate = climate self.fec_meas = fecundity_measurements self.mortality_type = 'noexp' self.fecundity_type = 'uniform_exp' self._tweak_covariat = None self._tweak_factor = 1.0 # set parameters self.params = { 'growth': { 'mean': np.array( [ -6.134753578, 0.765515413, 0.006574618, 0.362328659 ]), 'covariance': np.array( [[ 2.3003264050, -3.551420e-04, -9.540608e-04, -1.202835e-01 ], [ -0.0003551420, 3.699543e-04, 1.274024e-06, -6.374569e-05 ], [ -0.0009540608, 1.274024e-06, 3.545569e-06, 3.898729e-05 ], [ -0.1202834507, -6.374569e-05, 3.898729e-05, 6.350332e-03 ]]) }, 'survival': { 'mean': np.array( [ -1.482555395, 0.753372235, 0.003454076, -0.001100492 ]), 'covariance': np.array( [[ 1.149244e-01, -1.422819e-02, -4.075111e-04, 5.042504e-05 ], [ -1.422819e-02, 1.058307e-02, 5.006554e-05, -3.693585e-05 ], [ -4.075111e-04, 5.006554e-05, 1.520893e-06, -1.896803e-07 ], [ 5.042504e-05, -3.693585e-05, -1.896803e-07, 1.351324e-07 ]]) }, 'fecundity': { 'mean': np.array( [ 3.16420466, 0.06773083, 0.02146190 ]), 'covariance': np.array( [[ 2.900329e-02, 3.790527e-04, 2.113102e-05 ], [ 3.790527e-04, 1.101385e-04, 8.486999e-06 ], [ 2.113102e-05, 8.486999e-06, 1.079253e-05 ]]) } } # default parameters self.growth_params = self.params['growth']['mean'] self.survival_params = self.params['survival']['mean'] self.fecundity_params = self.params['fecundity']['mean']