Пример #1
0
def trans_audio_2_wav(audio_path):
    audio_format = audio_path.split('.')[-1]
    song = AudioSegment.from_file(audio_path, audio_format)
    song = song.set_channels(1)
    out_path = audio_path.replace('Data/', 'Data/wav/')
    out_path = out_path.replace(audio_format, 'wav')
    if_no_create_it(out_path)
    song.export(out_path, 'wav')
    return 0
Пример #2
0
def build_cnn_model(onDataset='dataset.h5', featureX='X', targetY='Y', sub_combine_list=[]):
    onDataset_name = onDataset.split('/')[-1].split('.')[0]
    X_train, X_test, Y_train, Y_test, X_val, Y_val = load_train_test_data(onDataset, featureX, targetY)
    print 'len Xtrain=================>>>>>>>>>>>>>>>>>>', len(X_train)
    model_save_path = 'models/cnn_' + onDataset_name + '_model.json'
    model_weights_save_path = model_save_path.replace('.json', '.h5')
    print 'weight:', model_weights_save_path
    if LOAD_MODEL_FLAG and os.path.isfile(model_save_path) and os.path.isfile(model_weights_save_path):
        print model_save_path
        model = load_model(model_save_path)
        model = load_model_weights(model_weights_save_path, model)
    else:
        print 'create model'
        model = Sequential()
        #parm
        # nb_filter
        # nb_row
        # nb_col
        nb_filter_1, nb_row_1, nb_col_1, drop_rate = 63, 1, 10, 0.2
        model.add(Conv2D(nb_filter_1, nb_row_1, nb_col_1, input_shape=(1, 2582, 63), activation='relu'))
        # shapes: [?,nb_row_1,2582+1-nb_col_1,nb_filter_1]
        model.add(Dropout(drop_rate))
        model.add(MaxPooling2D(pool_size=(1, 20)))
        # shapes: [?,1,(2582+1-nb_col_1+1)/2,nb_filter_1]
        model.add(Dropout(drop_rate))
        model.add(Conv2D(63, 1, 8, activation='relu'))
        model.add(Dropout(drop_rate))
        model.add(MaxPooling2D(pool_size=(1, 20)))
        model.add(Dropout(drop_rate))
        model.add(Flatten())
        model.add(Dense(200, activation='relu'))
        model.add(Dropout(drop_rate))
        model.add(Dense(50, activation='relu'))
        model.add(Dropout(drop_rate))


        model.add(Dense(20, init='normal', activation='sigmoid'))

    model.compile(loss='categorical_crossentropy', optimizer='adam',
                  metrics=['accuracy', 'precision', 'recall', 'fmeasure'])  # accuracy mae fmeasure precision recall
    # train model ...
    print "train..."
    earlyStopping = EarlyStopping(monitor='val_acc',patience=100)
    print numpy.shape(X_test)
    model.fit(X_train, Y_train, verbose=2, shuffle=True, callbacks=[earlyStopping], nb_epoch=EPOCH,
              validation_data=(X_val, Y_val), batch_size=BATCH_SIZE)
    if_no_create_it(model_save_path)
    save_model(model, model_save_path)
    if_no_create_it(model_weights_save_path)
    save_model_weights(model, model_weights_save_path)
    loss_and_metrics = model.evaluate(X_test, Y_test, verbose=2, batch_size=BATCH_SIZE)
    print '==============='
    print 'loss_metrics: ', loss_and_metrics

    return loss_and_metrics[1]
Пример #3
0
def build_lstm_model(onDataset='dataset.h5', featureX='X', targetY='Y'):
    onDataset_name = onDataset.split('/')[-1].split('.')[0]
    X_train, X_test, Y_train, Y_test, X_val, Y_val = load_train_test_data(
        onDataset, featureX, targetY)
    print 'len Xtrain=================>>>>>>>>>>>>>>>>>>', len(X_train)
    INPUT_DIM = len(X_train[0][0])
    FEATRE_DIM = INPUT_DIM
    model_save_path = 'models/lstm_' + featureX + '_' + onDataset_name + '_model.json'
    if_no_create_it(model_save_path)
    model_weights_save_path = model_save_path.replace('.json', '.h5')
    if_no_create_it(model_weights_save_path)
    print 'weight:', model_weights_save_path
    if LOAD_MODEL_FLAG and os.path.isfile(model_save_path) and os.path.isfile(
            model_weights_save_path):
        print model_save_path
        model = load_model(model_save_path)
        model = load_model_weights(model_weights_save_path, model)
    else:
        # create model
        model = Sequential()
        model.add(LSTM(500, input_shape=(TIME_SIZE, FEATRE_DIM)))
        model.add(Dropout(.5))
        model.add(Dense(3, init='normal', activation='softmax'))
    # compile model
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy', 'precision', 'recall', 'fmeasure'
                           ])  # accuracy mae fmeasure precision recall
    # train model ...
    print "train..."
    earlyStopping = EarlyStopping(monitor='val_loss',
                                  patience=5,
                                  verbose=0,
                                  min_delta=0.02)
    # model.fit(X_train, Y_train, validation_split=0.2, verbose=2, callbacks=[earlyStopping], nb_epoch=EPOCH,
    #           batch_size=BATCH_SIZE)

    model.fit(X_train,
              Y_train,
              verbose=2,
              shuffle=True,
              callbacks=[earlyStopping],
              nb_epoch=EPOCH,
              validation_data=(X_val, Y_val))
    save_model(model, model_save_path)
    save_model_weights(model, model_weights_save_path)

    loss_and_metrics = model.evaluate(X_test, Y_test, verbose=0)
    print '==============='
    print 'loss_metrics: ', loss_and_metrics

    return loss_and_metrics[1]
Пример #4
0
def main():
    model_path = 'kerasModel/dnn.model'

    if_no_create_it(model_path)
    retrain = 1
    if retrain != 1 and os.path.isfile(model_path):
        # load json and create model
        json_file = open(model_path, 'r')
        loaded_model_json = json_file.read()
        json_file.close()
        model = model_from_json(loaded_model_json)
        # load weights into new model
        model.load_weights(model_path.replace('.model', '.weights'))
        print("Loaded model from disk")
    else:
        model = create_baseline()
        print model.summary()
        callbacks = [EarlyStopping(monitor='val_loss', patience=2, verbose=0)]
        model.fit(trainX,
                  trainY,
                  batch_size=100,
                  nb_epoch=10,
                  validation_data=(validX, validY),
                  callbacks=callbacks,
                  verbose=1)
        if retrain == 1 or not os.path.isfile(model_path):
            # serialize model to JSON
            model_json = model.to_json()
            with open(model_path, "w") as json_file:
                json_file.write(model_json)
            # serialize weights to HDF5
            model.save_weights(model_path.replace('.model', '.weights'))
            print("Saved model to disk")

    pre_testY = model.predict_classes(testX)
    print '\n acc: ', get_acc(pre_testY, testY)

    return 0