def learn(
        *,
        network,
        env,
        eval_env,
        make_eval_env,
        env_id,
        total_timesteps,
        timesteps_per_batch,
        sil_update,
        sil_loss,  # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0,  # advantage estimation
        seed=None,
        ent_coef=0.0,
        lr=3e-4,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=5,
        sil_value=0.01,
        sil_alpha=0.6,
        sil_beta=0.1,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        save_interval=0,
        load_path=None,
        # MBL
        # For train mbl
        mbl_train_freq=5,

        # For eval
        num_eval_episodes=5,
        eval_freq=5,
        vis_eval=False,
        #eval_targs=('mbmf',),
        eval_targs=('mf', ),
        quant=2,

        # For mbl.step
        #num_samples=(1500,),
        num_samples=(1, ),
        horizon=(2, ),
        #horizon=(2,1),
        #num_elites=(10,),
        num_elites=(1, ),
        mbl_lamb=(1.0, ),
        mbl_gamma=0.99,
        #mbl_sh=1, # Number of step for stochastic sampling
        mbl_sh=10000,
        #vf_lookahead=-1,
        #use_max_vf=False,
        reset_per_step=(0, ),

        # For get_model
        num_fc=2,
        num_fwd_hidden=500,
        use_layer_norm=False,

        # For MBL
        num_warm_start=int(1e4),
        init_epochs=10,
        update_epochs=5,
        batch_size=512,
        update_with_validation=False,
        use_mean_elites=1,
        use_ent_adjust=0,
        adj_std_scale=0.5,

        # For data loading
        validation_set_path=None,

        # For data collect
        collect_val_data=False,

        # For traj collect
        traj_collect='mf',

        # For profile
        measure_time=True,
        eval_val_err=False,
        measure_rew=True,
        model_fn=None,
        update_fn=None,
        init_fn=None,
        mpi_rank_weight=1,
        comm=None,
        vf_coef=0.5,
        max_grad_norm=0.5,
        log_interval=1,
        nminibatches=4,
        noptepochs=4,
        cliprange=0.2,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''
    if not isinstance(num_samples, tuple): num_samples = (num_samples, )
    if not isinstance(horizon, tuple): horizon = (horizon, )
    if not isinstance(num_elites, tuple): num_elites = (num_elites, )
    if not isinstance(mbl_lamb, tuple): mbl_lamb = (mbl_lamb, )
    if not isinstance(reset_per_step, tuple):
        reset_per_step = (reset_per_step, )
    if validation_set_path is None:
        if collect_val_data:
            validation_set_path = os.path.join(logger.get_dir(), 'val.pkl')
        else:
            validation_set_path = os.path.join('dataset',
                                               '{}-val.pkl'.format(env_id))
    if eval_val_err:
        eval_val_err_path = os.path.join('dataset',
                                         '{}-combine-val.pkl'.format(env_id))
    logger.log(locals())
    logger.log('MBL_SH', mbl_sh)
    logger.log('Traj_collect', traj_collect)

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0
    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    set_global_seeds(seed)
    if isinstance(lr, float): lr = constfn(lr)
    else: assert callable(lr)
    if isinstance(cliprange, float): cliprange = constfn(cliprange)
    else: assert callable(cliprange)

    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    nenvs = env.num_envs
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    nbatch = nenvs * timesteps_per_batch
    nbatch_train = nbatch // nminibatches
    is_mpi_root = (MPI is None or MPI.COMM_WORLD.Get_rank() == 0)

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
        make_model = lambda: Model(
            policy=policy,
            ob_space=ob_space,
            ac_space=ac_space,
            nbatch_act=nenvs,
            nbatch_train=nbatch_train,
            nsteps=timesteps_per_batch,
            ent_coef=ent_coef,
            vf_coef=vf_coef,
            max_grad_norm=max_grad_norm,
            sil_update=sil_update,
            sil_value=sil_value,
            sil_alpha=sil_alpha,
            sil_beta=sil_beta,
            sil_loss=sil_loss,
            #                                    fn_reward=env.process_reward,
            fn_reward=None,
            #                                    fn_obs=env.process_obs,
            fn_obs=None,
            ppo=False,
            prev_pi='pi',
            silm=pi)
        model = make_model()
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)
        make_old_model = lambda: Model(
            policy=policy,
            ob_space=ob_space,
            ac_space=ac_space,
            nbatch_act=nenvs,
            nbatch_train=nbatch_train,
            nsteps=timesteps_per_batch,
            ent_coef=ent_coef,
            vf_coef=vf_coef,
            max_grad_norm=max_grad_norm,
            sil_update=sil_update,
            sil_value=sil_value,
            sil_alpha=sil_alpha,
            sil_beta=sil_beta,
            sil_loss=sil_loss,
            #                                    fn_reward=env.process_reward,
            fn_reward=None,
            #                                    fn_obs=env.process_obs,
            fn_obs=None,
            ppo=False,
            prev_pi='oldpi',
            silm=oldpi)
        old_model = make_old_model()

    # MBL
    # ---------------------------------------
    #viz = Visdom(env=env_id)
    win = None
    eval_targs = list(eval_targs)
    logger.log(eval_targs)

    make_model_f = get_make_mlp_model(num_fc=num_fc,
                                      num_fwd_hidden=num_fwd_hidden,
                                      layer_norm=use_layer_norm)
    mbl = MBL(env=eval_env,
              env_id=env_id,
              make_model=make_model_f,
              num_warm_start=num_warm_start,
              init_epochs=init_epochs,
              update_epochs=update_epochs,
              batch_size=batch_size,
              **network_kwargs)

    val_dataset = {'ob': None, 'ac': None, 'ob_next': None}
    if update_with_validation:
        logger.log('Update with validation')
        val_dataset = load_val_data(validation_set_path)
    if eval_val_err:
        logger.log('Log val error')
        eval_val_dataset = load_val_data(eval_val_err_path)
    if collect_val_data:
        logger.log('Collect validation data')
        val_dataset_collect = []

    def _mf_pi(ob, t=None):
        stochastic = True
        ac, vpred, _, _ = pi.step(ob, stochastic=stochastic)
        return ac, vpred

    def _mf_det_pi(ob, t=None):
        #ac, vpred, _, _ = pi.step(ob, stochastic=False)
        ac, vpred = pi._evaluate([pi.pd.mode(), pi.vf], ob)
        return ac, vpred

    def _mf_ent_pi(ob, t=None):
        mean, std, vpred = pi._evaluate([pi.pd.mode(), pi.pd.std, pi.vf], ob)
        ac = np.random.normal(mean, std * adj_std_scale, size=mean.shape)
        return ac, vpred
################### use_ent_adjust======> adj_std_scale????????pi action sample

    def _mbmf_inner_pi(ob, t=0):
        if use_ent_adjust:
            return _mf_ent_pi(ob)
        else:
            #return _mf_pi(ob)
            if t < mbl_sh: return _mf_pi(ob)
            else: return _mf_det_pi(ob)

    # ---------------------------------------

    # Run multiple configuration once
    all_eval_descs = []

    def make_mbmf_pi(n, h, e, l):
        def _mbmf_pi(ob):
            ac, rew = mbl.step(ob=ob,
                               pi=_mbmf_inner_pi,
                               horizon=h,
                               num_samples=n,
                               num_elites=e,
                               gamma=mbl_gamma,
                               lamb=l,
                               use_mean_elites=use_mean_elites)
            return ac[None], rew

        return Policy(step=_mbmf_pi, reset=None)

    for n in num_samples:
        for h in horizon:
            for l in mbl_lamb:
                for e in num_elites:
                    if 'mbmf' in eval_targs:
                        all_eval_descs.append(('MeanRew', 'MBL_TRPO_SIL',
                                               make_mbmf_pi(n, h, e, l)))
                    #if 'mbmf' in eval_targs: all_eval_descs.append(('MeanRew-n-{}-h-{}-e-{}-l-{}-sh-{}-me-{}'.format(n, h, e, l, mbl_sh, use_mean_elites), 'MBL_TRPO-n-{}-h-{}-e-{}-l-{}-sh-{}-me-{}'.format(n, h, e, l, mbl_sh, use_mean_elites), make_mbmf_pi(n, h, e, l)))
    if 'mf' in eval_targs:
        all_eval_descs.append(
            ('MeanRew', 'TRPO_SIL', Policy(step=_mf_pi, reset=None)))

    logger.log('List of evaluation targets')
    for it in all_eval_descs:
        logger.log(it[0])

    pool = Pool(mp.cpu_count())
    warm_start_done = False
    # ----------------------------------------

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)
    # Prepare for rollouts
    # ----------------------------------------
    if traj_collect == 'mf':
        seg_gen = traj_segment_generator(env,
                                         timesteps_per_batch,
                                         model,
                                         stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
            if traj_collect == 'mf-random' or traj_collect == 'mf-mb':
                seg_mbl = seg_gen_mbl.__next__()
            else:
                seg_mbl = seg
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]

        # Val data collection
        if collect_val_data:
            for ob_, ac_, ob_next_ in zip(ob[:-1, 0, ...], ac[:-1, ...],
                                          ob[1:, 0, ...]):
                val_dataset_collect.append(
                    (copy.copy(ob_), copy.copy(ac_), copy.copy(ob_next_)))
        # -----------------------------
        # MBL update
        else:
            ob_mbl, ac_mbl = seg_mbl["ob"], seg_mbl["ac"]

            mbl.add_data_batch(ob_mbl[:-1, 0, ...], ac_mbl[:-1, ...],
                               ob_mbl[1:, 0, ...])
            mbl.update_forward_dynamic(require_update=iters_so_far %
                                       mbl_train_freq == 0,
                                       ob_val=val_dataset['ob'],
                                       ac_val=val_dataset['ac'],
                                       ob_next_val=val_dataset['ob_next'])
        # -----------------------------

        if traj_collect == 'mf':
            #if traj_collect == 'mf' or traj_collect == 'mf-random' or traj_collect == 'mf-mb':
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            model = seg["model"]
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
            if hasattr(pi, "rms"):
                pi.rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            def fisher_vector_product(p):
                return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

            for (lossname, lossval) in zip(loss_names, meanlosses):
                logger.record_tabular(lossname, lossval)

            with timed("vf"):

                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=64):
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)
            with timed("SIL"):
                lrnow = lr(1.0 - timesteps_so_far / total_timesteps)
                l_loss, sil_adv, sil_samples, sil_nlogp = model.sil_train(
                    lrnow)

            logger.record_tabular("ev_tdlam_before",
                                  explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if sil_update > 0:
            logger.record_tabular("SilSamples", sil_samples)

        if rank == 0:
            # MBL evaluation
            if not collect_val_data:
                #set_global_seeds(seed)
                default_sess = tf.get_default_session()

                def multithread_eval_policy(env_, pi_, num_episodes_,
                                            vis_eval_, seed):
                    with default_sess.as_default():
                        if hasattr(env, 'ob_rms') and hasattr(env_, 'ob_rms'):
                            env_.ob_rms = env.ob_rms
                        res = eval_policy(env_, pi_, num_episodes_, vis_eval_,
                                          seed, measure_time, measure_rew)

                        try:
                            env_.close()
                        except:
                            pass
                    return res

                if mbl.is_warm_start_done() and iters_so_far % eval_freq == 0:
                    warm_start_done = mbl.is_warm_start_done()
                    if num_eval_episodes > 0:
                        targs_names = {}
                        with timed('eval'):
                            num_descs = len(all_eval_descs)
                            list_field_names = [e[0] for e in all_eval_descs]
                            list_legend_names = [e[1] for e in all_eval_descs]
                            list_pis = [e[2] for e in all_eval_descs]
                            list_eval_envs = [
                                make_eval_env() for _ in range(num_descs)
                            ]
                            list_seed = [seed for _ in range(num_descs)]
                            list_num_eval_episodes = [
                                num_eval_episodes for _ in range(num_descs)
                            ]
                            print(list_field_names)
                            print(list_legend_names)

                            list_vis_eval = [
                                vis_eval for _ in range(num_descs)
                            ]

                            for i in range(num_descs):
                                field_name, legend_name = list_field_names[
                                    i], list_legend_names[i],

                                res = multithread_eval_policy(
                                    list_eval_envs[i], list_pis[i],
                                    list_num_eval_episodes[i],
                                    list_vis_eval[i], seed)
                                #eval_results = pool.starmap(multithread_eval_policy, zip(list_eval_envs, list_pis, list_num_eval_episodes, list_vis_eval,list_seed))

                                #for field_name, legend_name, res in zip(list_field_names, list_legend_names, eval_results):
                                perf, elapsed_time, eval_rew = res
                                logger.record_tabular(field_name, perf)
                                if measure_time:
                                    logger.record_tabular(
                                        'Time-%s' % (field_name), elapsed_time)
                                if measure_rew:
                                    logger.record_tabular(
                                        'SimRew-%s' % (field_name), eval_rew)
                                targs_names[field_name] = legend_name

                    if eval_val_err:
                        fwd_dynamics_err = mbl.eval_forward_dynamic(
                            obs=eval_val_dataset['ob'],
                            acs=eval_val_dataset['ac'],
                            obs_next=eval_val_dataset['ob_next'])
                        logger.record_tabular('FwdValError', fwd_dynamics_err)

                    logger.dump_tabular()
                    #print(logger.get_dir())
                    #print(targs_names)
                    #if num_eval_episodes > 0:


#                        win = plot(viz, win, logger.get_dir(), targs_names=targs_names, quant=quant, opt='best')
# -----------
#logger.dump_tabular()
        yield pi

    if collect_val_data:
        with open(validation_set_path, 'wb') as f:
            pickle.dump(val_dataset_collect, f)
        logger.log('Save {} validation data'.format(len(val_dataset_collect)))
Пример #2
0
def learn(
        *,
        network,
        env,
        total_timesteps,
        timesteps_per_batch=1024,  # what to train on
        max_kl=0.002,
        cg_iters=10,
        gamma=0.99,
        lam=1.0,  # advantage estimation
        seed=None,
        ent_coef=0.00,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        num_reward=1,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0

    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    set_global_seeds(seed)
    # 创建policy
    policy = build_policy(env,
                          network,
                          value_network='copy',
                          num_reward=num_reward,
                          **network_kwargs)

    process_dir = logger.get_dir()
    save_dir = process_dir.split(
        'Data')[-2] + 'log/l2/seed' + process_dir[-1] + '/'
    os.makedirs(save_dir, exist_ok=True)
    coe_save = []
    impro_save = []
    grad_save = []
    adj_save = []
    coe = np.ones((num_reward)) / num_reward

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    #################################################################
    # ob ac ret atarg 都是 placeholder
    # ret atarg 此处应该是向量形式
    ob = observation_placeholder(ob_space)

    # 创建pi和oldpi
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    # 每个reward都可以算一个atarg
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32,
                         shape=[None, num_reward])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    #此处的KL div和entropy与reward无关
    ##################################
    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    # entbonus 是entropy loss
    entbonus = ent_coef * meanent
    #################################

    ###########################################################
    # vferr 用来更新 v 网络
    vferr = tf.reduce_mean(tf.square(pi.vf - ret))
    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))
    # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    # optimgain 用来更新 policy 网络, 应该每个reward有一个
    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    ###########################################################
    dist = meankl

    # 定义要优化的变量和 V 网络 adam 优化器
    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    # 把变量展开成一个向量的类
    get_flat = U.GetFlat(var_list)

    # 这个类可以把一个向量分片赋值给var_list里的变量
    set_from_flat = U.SetFromFlat(var_list)
    # kl散度的梯度
    klgrads = tf.gradients(dist, var_list)

    ####################################################################
    # 拉直的向量
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")

    # 把拉直的向量重新分成很多向量
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    ####################################################################

    ####################################################################
    # 把kl散度梯度与变量乘积相加
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    # 把gvp的梯度展成向量
    fvp = U.flatgrad(gvp, var_list)
    ####################################################################

    # 用学习后的策略更新old策略
    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])

    # 计算loss
    compute_losses = U.function([ob, ac, atarg], losses)
    # 计算loss和梯度
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    # 计算fvp
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    # 计算值网络的梯度
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    # 初始化variable
    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    # 得到初始化的参数向量
    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    # 把向量the_init的值分片赋值给var_list
    set_from_flat(th_init)

    #同步
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------

    # 这是一个生成数据的迭代器
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True,
                                     num_reward=num_reward)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()

    # 双端队列
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()

        # 计算累积回报
        add_vtarg_and_adv(seg, gamma, lam, num_reward=num_reward)
        ###########$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ToDo
        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))

        # ob, ac, atarg, tdlamret 的类型都是ndarray
        #ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        _, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        #print(seg['ob'].shape,type(seg['ob']))
        #print(seg['ac'],type(seg['ac']))
        #print(seg['adv'],type(seg['adv']))
        #print(seg["tdlamret"].shape,type(seg['tdlamret']))
        vpredbefore = seg["vpred"]  # predicted value function before udpate

        # 标准化
        #print("============================== atarg =========================================================")
        #print(atarg)
        atarg = (atarg - np.mean(atarg, axis=0)) / np.std(
            atarg, axis=0)  # standardized advantage function estimate
        #atarg = (atarg) / np.max(np.abs(atarg),axis=0)
        #print('======================================= standardized atarg ====================================')
        #print(atarg)
        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        ## set old parameter values to new parameter values
        assign_old_eq_new()

        G = None
        S = None
        mr_lossbefore = np.zeros((num_reward, len(loss_names)))
        grad_norm = np.zeros((num_reward + 1))
        for i in range(num_reward):
            args = seg["ob"], seg["ac"], atarg[:, i]
            #print(atarg[:,i])
            # 算是args的一个sample,每隔5个取出一个
            fvpargs = [arr[::5] for arr in args]

            # 这个函数计算fisher matrix 与向量 p 的 乘积
            def fisher_vector_product(p):
                return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

            with timed("computegrad of " + str(i + 1) + ".th reward"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            mr_lossbefore[i] = lossbefore
            g = allmean(g)
            #print("***************************************************************")
            #print(g)
            if isinstance(G, np.ndarray):
                G = np.vstack((G, g))
            else:
                G = g

            # g是目标函数的梯度
            # 利用共轭梯度获得更新方向
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg of " + str(i + 1) + ".th reward"):
                    # stepdir 是更新方向
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                    shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                    lm = np.sqrt(shs / max_kl)
                    # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                    fullstep = stepdir / lm
                    grad_norm[i] = np.linalg.norm(fullstep)
                assert np.isfinite(stepdir).all()
                if isinstance(S, np.ndarray):
                    S = np.vstack((S, stepdir))
                else:
                    S = stepdir
        #print('======================================= G ====================================')
        #print(G)
        #print('======================================= S ====================================')
        #print(S)
        try:
            new_coe = get_coefficient(G, S)
            #coe = 0.99 * coe + 0.01 * new_coe
            coe = new_coe
            coe_save.append(coe)
            #根据梯度的夹角调整参数
            # GG = np.dot(S, S.T)
            # D = np.sqrt(np.diag(1/np.diag(GG)))
            # GG = np.dot(np.dot(D,GG),D)
            # #print('======================================= inner product ====================================')
            # #print(GG)
            # adj = np.sum(GG) / (num_reward ** 2)
            adj = 1
            #print('======================================= adj ====================================')
            #print(adj)
            adj_save.append(adj)
            adj_max_kl = adj * max_kl
            #################################################################
            grad_norm = grad_norm * np.sqrt(adj)
            stepdir = np.dot(coe, S)
            g = np.dot(coe, G)
            lossbefore = np.dot(coe, mr_lossbefore)
            #################################################################

            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / adj_max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            grad_norm[num_reward] = np.linalg.norm(fullstep)
            grad_save.append(grad_norm)
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()

            def compute_mr_losses():
                mr_losses = np.zeros((num_reward, len(loss_names)))
                for i in range(num_reward):
                    args = seg["ob"], seg["ac"], atarg[:, i]
                    one_reward_loss = allmean(np.array(compute_losses(*args)))
                    mr_losses[i] = one_reward_loss
                mr_loss = np.dot(coe, mr_losses)
                return mr_loss, mr_losses

            # 做10次搜索
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                mr_loss_new, mr_losses_new = compute_mr_losses()
                mr_impro = mr_losses_new - mr_lossbefore
                meanlosses = surr, kl, *_ = allmean(np.array(mr_loss_new))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" %
                           (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > adj_max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    impro_save.append(np.hstack((mr_impro[:, 0], improve)))
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

            for (lossname, lossval) in zip(loss_names, meanlosses):
                logger.record_tabular(lossname, lossval)

            with timed("vf"):
                #print('======================================= tdlamret ====================================')
                #print(seg["tdlamret"])
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=64):
                        #with tf.Session() as sess:
                        #    sess.run(tf.global_variables_initializer())
                        #    aaa = sess.run(pi.vf,feed_dict={ob:mbob,ret:mbret})
                        #    print("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")
                        #    print(aaa.shape)
                        #    print(mbret.shape)
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)
        except:
            print('error')
            #print(mbob,mbret)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if rank == 0:
            logger.dump_tabular()
        #pdb.set_trace()
    np.save(save_dir + 'coe.npy', coe_save)
    np.save(save_dir + 'grad.npy', grad_save)
    np.save(save_dir + 'improve.npy', impro_save)
    np.save(save_dir + 'adj.npy', adj_save)
    return pi
Пример #3
0
def run_hoof_no_lamgam(
        network,
        env,
        total_timesteps,
        timesteps_per_batch,  # what to train on
        kl_range,
        gamma_range,
        lam_range,  # advantage estimation
        num_kl,
        num_gamma_lam,
        cg_iters=10,
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm
    Parameters:
    ----------
    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets
    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class
    timesteps_per_batch     timesteps per gradient estimation batch
    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )
    ent_coef                coefficient of policy entropy term in the optimization objective
    cg_iters                number of iterations of conjugate gradient algorithm
    cg_damping              conjugate gradient damping
    vf_stepsize             learning rate for adam optimizer used to optimie value function loss
    vf_iters                number of iterations of value function optimization iterations per each policy optimization step
    total_timesteps           max number of timesteps
    max_episodes            max number of episodes
    max_iters               maximum number of policy optimization iterations
    callback                function to be called with (locals(), globals()) each policy optimization step
    load_path               str, path to load the model from (default: None, i.e. no model is loaded)
    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
    Returns:
    -------
    learnt model
    '''

    MPI = None
    nworkers = 1
    rank = 0

    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    # +2 for gamma, lambda
    ob = tf.placeholder(shape=(None, env.observation_space.shape[0] + 2),
                        dtype=env.observation_space.dtype,
                        name='Ob')
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])

    compute_ratio = U.function(
        [ob, ac, atarg], ratio)  # IS ratio - used for computing IS weights

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator_with_gl(pi,
                                             env,
                                             timesteps_per_batch,
                                             stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    kl_range = np.atleast_1d(kl_range)
    gamma_range = np.atleast_1d(gamma_range)
    lam_range = np.atleast_1d(lam_range)

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()

        thbefore = get_flat()

        rand_gamma = gamma_range[0] + (
            gamma_range[-1] - gamma_range[0]) * np.random.rand(num_gamma_lam)
        rand_lam = lam_range[0] + (
            lam_range[-1] - lam_range[0]) * np.random.rand(num_gamma_lam)
        rand_kl = kl_range[0] + (kl_range[-1] -
                                 kl_range[0]) * np.random.rand(num_kl)

        opt_polval = -10**8
        est_polval = np.zeros((num_gamma_lam, num_kl))
        ob_lam_gam = []
        tdlamret = []
        vpred = []

        for gl in range(num_gamma_lam):
            oblg, vpredbefore, atarg, tdlr = add_vtarg_and_adv_without_gl(
                pi, seg, rand_gamma[gl], rand_lam[gl])

            ob_lam_gam += [oblg]
            tdlamret += [tdlr]
            vpred += [vpredbefore]
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            pol_ob = np.concatenate(
                (seg['ob'], np.zeros(seg['ob'].shape[:-1] + (2, ))), axis=-1)
            args = pol_ob, seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            def fisher_vector_product(p):
                return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=False)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                surrbefore = lossbefore[0]

                for m, kl in enumerate(rand_kl):
                    lm = np.sqrt(shs / kl)
                    fullstep = stepdir / lm
                    thnew = thbefore + fullstep
                    set_from_flat(thnew)

                    # compute the IS estimates
                    lik_ratio = compute_ratio(*args)
                    est_polval[gl, m] = wis_estimate(seg, lik_ratio)

                    # update best policy found so far
                    if est_polval[gl, m] > opt_polval:
                        opt_polval = est_polval[gl, m]
                        opt_th = thnew
                        opt_kl = kl
                        opt_gamma = rand_gamma[gl]
                        opt_lam = rand_lam[gl]
                        opt_vpredbefore = vpredbefore
                        opt_tdlr = tdlr
                        meanlosses = surr, kl, *_ = allmean(
                            np.array(compute_losses(*args)))
                        improve = surr - surrbefore
                        expectedimprove = g.dot(fullstep)
                    set_from_flat(thbefore)
        logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve))
        set_from_flat(opt_th)

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        ob_lam_gam = np.concatenate(ob_lam_gam, axis=0)
        tdlamret = np.concatenate(tdlamret, axis=0)
        vpred = np.concatenate(vpred, axis=0)
        with timed("vf"):
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (ob_lam_gam, tdlamret),
                        include_final_partial_batch=False,
                        batch_size=num_gamma_lam * 64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpred, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        logger.record_tabular("Opt_KL", opt_kl)
        logger.record_tabular("gamma", opt_gamma)
        logger.record_tabular("lam", opt_lam)

        if rank == 0:
            logger.dump_tabular()

    return pi
def learn(
        env,
        policy_fn,
        *,
        timesteps_per_batch,  # what to train on
        epsilon,
        beta,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        TRPO=False,
        n_policy=1,
        policy_type=0,
        filepath='',
        session,
        retrace=False):
    '''
    :param TRPO: True: TRPO, False: COPOS
    :param n_policy: Number of periodic policy parts
    :param policy_type: 0: Optimize 'n_policy' policies that are executed periodically. All the policies are updated.
                        1: The last 'n_policy' policies are executed periodically but only the last one is optimized.
                        2: The policy is spread over 'n_policy' time steps.
    '''
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pis = [
        policy_fn("pi_" + str(i), ob_space, ac_space) for i in range(n_policy)
    ]
    oldpis = [
        policy_fn("oldpi_" + str(i), ob_space, ac_space)
        for i in range(n_policy)
    ]
    pi_vf = policy_fn("pi_vf", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")

    if policy_type == 0:
        print(
            "Policy type: " + str(policy_type) +
            ". Optimize 'n_policy' policies that are executed periodically. All the policies are updated."
        )
    elif policy_type == 1:
        print(
            "Policy type: " + str(policy_type) +
            ". The last 'n_policy' policies are executed periodically but only the last one is optimized."
        )
    elif policy_type == 2:
        print("Policy type: " + str(policy_type) +
              ". The policy is spread over 'n_policy' time steps.")
    else:
        print("Policy type: " + str(policy_type) + " is not supported.")

    # Compute variables for each policy separately
    old_entropy = []
    get_flat = []
    set_from_flat = []
    assign_old_eq_new = []
    copy_policy_back = []
    compute_losses = []
    compute_lossandgrad = []
    compute_fvp = []

    for i in range(n_policy):
        pi = pis[i]
        oldpi = oldpis[i]

        ac = pi.pdtype.sample_placeholder([None])

        kloldnew = oldpi.pd.kl(pi.pd)
        ent = pi.pd.entropy()
        old_entropy.append(oldpi.pd.entropy())
        meankl = tf.reduce_mean(kloldnew)
        meanent = tf.reduce_mean(ent)
        entbonus = entcoeff * meanent

        ratio = tf.exp(pi.pd.logp(ac) -
                       oldpi.pd.logp(ac))  # advantage * pnew / pold
        if retrace:
            surrgain = tf.reduce_mean(
                atarg)  # atarg incorporates pnew / pold already
        else:
            surrgain = tf.reduce_mean(ratio * atarg)

        optimgain = surrgain + entbonus
        losses = [optimgain, meankl, entbonus, surrgain, meanent]
        loss_names = ["optimgain", "meankl", "entloss", "surrgain", "Entropy"]

        dist = meankl

        all_var_list = pi.get_trainable_variables()
        all_var_list = [
            v for v in all_var_list if v.name.split("/")[0].startswith("pi")
        ]
        var_list = [
            v for v in all_var_list if v.name.split("/")[1].startswith("pol")
        ]

        #
        # fvp: Fisher Information Matrix / vector product based on Hessian of KL-divergence
        # fvp = F * v, where F = - E \partial_1 \partial_2 KL_div(p1 || p2)
        #
        get_flat.append(U.GetFlat(var_list))
        set_from_flat.append(U.SetFromFlat(var_list))
        klgrads = tf.gradients(dist, var_list)
        flat_tangent = tf.placeholder(dtype=tf.float32,
                                      shape=[None],
                                      name="flat_tan")
        shapes = [var.get_shape().as_list() for var in var_list]
        start = 0
        tangents = []
        for shape in shapes:
            sz = U.intprod(shape)
            tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
            start += sz
        gvp = tf.add_n([
            tf.reduce_sum(g * tangent)
            for (g, tangent) in zipsame(klgrads, tangents)
        ])  #pylint: disable=E1111
        fvp = U.flatgrad(gvp, var_list)

        #
        # fvpll: Fisher Information Matrix / vector product based on exact FIM
        # fvpll = F * v, where F = E[\partial_1 \log p * \partial_2 \log p]
        #

        # Mean: (\partial \mu^T / \partial param1) * Precision * (\partial \mu / \partial param1)

        # Covariance: 0.5 * Trace[Precision * (\partial Cov / \partial param1) *
        #                         Precision * (\partial Cov / \partial param2)]

        if i > 0:
            # Only needed for policy_type == 1 for copying policy 'i' to policy 'i-1'
            copy_policy_back.append(
                U.function(
                    [], [],
                    updates=[
                        tf.assign(oldv, newv) for (oldv, newv) in zipsame(
                            pis[i - 1].get_variables(), pi.get_variables())
                    ]))

        assign_old_eq_new.append(
            U.function([], [],
                       updates=[
                           tf.assign(oldv, newv) for (oldv, newv) in zipsame(
                               oldpi.get_variables(), pi.get_variables())
                       ]))
        compute_losses.append(U.function([ob, ac, atarg], losses))
        compute_lossandgrad.append(
            U.function([ob, ac, atarg],
                       losses + [U.flatgrad(optimgain, var_list)]))
        compute_fvp.append(U.function([flat_tangent, ob, ac, atarg], fvp))

    # Value function is global to all policies
    vferr = tf.reduce_mean(tf.square(pi_vf.vpred - ret))
    all_var_list = pi_vf.get_trainable_variables()
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    vfadam = MpiAdam(vf_var_list)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()

    if policy_type == 1:
        # Initialize policies to identical values
        th_init = get_flat[0]()
        for i in range(n_policy):
            MPI.COMM_WORLD.Bcast(th_init, root=0)
            set_from_flat[i](th_init)
            vfadam.sync()
            print("Init param sum", th_init.sum(), flush=True)
    else:
        for i in range(n_policy):
            th_init = get_flat[i]()
            MPI.COMM_WORLD.Bcast(th_init, root=0)
            set_from_flat[i](th_init)
            vfadam.sync()
            print("Init param sum", th_init.sum(), flush=True)

    # Initialize eta, omega optimizer
    init_eta = 0.5
    init_omega = 2.0
    eta_omega_optimizer = EtaOmegaOptimizer(beta, epsilon, init_eta,
                                            init_omega)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = []
    for i in range(len(pis)):
        seg_gen.append(
            traj_segment_generator(pis,
                                   i + 1,
                                   pi_vf,
                                   env,
                                   timesteps_per_batch,
                                   stochastic=True))

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    n_saves = 0
    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        if max_timesteps > 0 and (timesteps_so_far >=
                                  (n_saves * max_timesteps // 5)):
            # Save policy
            saver = tf.train.Saver()
            saver.save(session, filepath + "_" + str(iters_so_far))
            n_saves += 1

        with timed("sampling"):
            if policy_type == 1 and iters_so_far < len(pis):
                all_seg = seg_gen[iters_so_far].__next__(
                )  # For four time steps use the four policies
            else:
                all_seg = seg_gen[-1].__next__()

        if policy_type == 1 and retrace:
            act_pi_ids = np.empty_like(all_seg["vpred"], dtype=int)
            act_pi_ids[:] = n_policy - 1  # Always update the last policy
            add_vtarg_and_adv_retrace(all_seg, gamma, lam, act_pi_ids)
        else:
            add_vtarg_and_adv(all_seg, gamma, lam)

        # Split the advantage functions etc. among the policies
        segs = split_traj_segment(pis, all_seg)

        # Update all policies
        for pi_id in range(n_policy):
            if policy_type == 1:
                # Update only last policy
                pi_id = n_policy - 1
                # Using all the samples
                seg = all_seg
            else:
                seg = segs[pi_id]

            pi = pis[pi_id]
            oldpi = oldpis[pi_id]

            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before update
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            def fisher_vector_product(p):
                return allmean(compute_fvp[pi_id](p, *
                                                  fvpargs)) + cg_damping * p

            assign_old_eq_new[pi_id](
            )  # set old parameter values to new parameter values

            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad[pi_id](*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")

                if policy_type == 1:
                    # Update only the last policy
                    break
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()

                if TRPO:
                    #
                    # TRPO specific code.
                    # Find correct step size using line search
                    #
                    shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                    lm = np.sqrt(shs / epsilon)
                    # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                    fullstep = stepdir / lm
                    expectedimprove = g.dot(fullstep)
                    surrbefore = lossbefore[0]
                    stepsize = 1.0
                    thbefore = get_flat[pi_id]()
                    for _ in range(10):
                        thnew = thbefore + fullstep * stepsize
                        set_from_flat[pi_id](thnew)
                        meanlosses = surr, kl, *_ = allmean(
                            np.array(compute_losses[pi_id](*args)))
                        improve = surr - surrbefore
                        logger.log("Expected: %.3f Actual: %.3f" %
                                   (expectedimprove, improve))
                        if not np.isfinite(meanlosses).all():
                            logger.log(
                                "Got non-finite value of losses -- bad!")
                        elif kl > epsilon * 1.5:
                            logger.log(
                                "violated KL constraint. shrinking step.")
                        elif improve < 0:
                            logger.log(
                                "surrogate didn't improve. shrinking step.")
                        else:
                            logger.log("Stepsize OK!")
                            break
                        stepsize *= .5
                    else:
                        logger.log("couldn't compute a good step")
                        set_from_flat[pi_id](thbefore)
                else:
                    #
                    # COPOS specific implementation.
                    #

                    copos_update_dir = stepdir

                    # Split direction into log-linear 'w_theta' and non-linear 'w_beta' parts
                    w_theta, w_beta = pi.split_w(copos_update_dir)

                    # q_beta(s,a) = \grad_beta \log \pi(a|s) * w_beta
                    #             = features_beta(s) * K^T * Prec * a
                    # q_beta = self.target.get_q_beta(features_beta, actions)

                    Waa, Wsa = pi.w2W(w_theta)
                    wa = pi.get_wa(ob, w_beta)

                    varphis = pi.get_varphis(ob)

                    # Optimize eta and omega
                    tmp_ob = np.zeros(
                        (1, ) + env.observation_space.shape
                    )  # We assume that entropy does not depend on the NN
                    old_ent = old_entropy[pi_id].eval({oldpi.ob: tmp_ob})[0]
                    eta, omega = eta_omega_optimizer.optimize(
                        w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                        pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent)
                    logger.log("Initial eta: " + str(eta) + " and omega: " +
                               str(omega))

                    current_theta_beta = get_flat[pi_id]()
                    prev_theta, prev_beta = pi.all_to_theta_beta(
                        current_theta_beta)

                    for i in range(2):
                        # Do a line search for both theta and beta parameters by adjusting only eta
                        eta = eta_search(w_theta, w_beta, eta, omega, allmean,
                                         compute_losses[pi_id],
                                         get_flat[pi_id], set_from_flat[pi_id],
                                         pi, epsilon, args)
                        logger.log("Updated eta, eta: " + str(eta) +
                                   " and omega: " + str(omega))

                        # Find proper omega for new eta. Use old policy parameters first.
                        set_from_flat[pi_id](pi.theta_beta_to_all(
                            prev_theta, prev_beta))
                        eta, omega = \
                            eta_omega_optimizer.optimize(w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                                                         pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent, eta)
                        logger.log("Updated omega, eta: " + str(eta) +
                                   " and omega: " + str(omega))

                    # Use final policy
                    logger.log("Final eta: " + str(eta) + " and omega: " +
                               str(omega))
                    cur_theta = (eta * prev_theta +
                                 w_theta.reshape(-1, )) / (eta + omega)
                    cur_beta = prev_beta + w_beta.reshape(-1, ) / eta
                    thnew = pi.theta_beta_to_all(cur_theta, cur_beta)
                    set_from_flat[pi_id](thnew)

                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses[pi_id](*args)))

                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam[pi_id].getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

                for (lossname, lossval) in zip(loss_names, meanlosses):
                    logger.record_tabular(lossname, lossval)

                logger.record_tabular(
                    "ev_tdlam_before",
                    explained_variance(vpredbefore, tdlamret))

                if policy_type == 1:
                    # Update only the last policy
                    break

        if policy_type == 1:
            # Copy policies 1, ..., i to 0, ..., i-1
            for j in range(n_policy - 1):
                copy_policy_back[j]()

        with timed("vf"):
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (all_seg["ob"], all_seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        lrlocal = (all_seg["ep_lens"], all_seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("AverageReturn", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
Пример #5
0
def learn(env, policy_func, reward_giver, expert_dataset, rank,
          pretrained, pretrained_weight, *,
          g_step, d_step, entcoeff, save_per_iter,
          ckpt_dir, timesteps_per_batch, task_name,
          gamma, lam,
          max_kl, cg_iters, cg_damping=1e-2,
          vf_stepsize=3e-4, d_stepsize=3e-4, vf_iters=3,
          max_timesteps=0, max_episodes=0, max_iters=0,
          callback=None
          ):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space, reuse=(pretrained_weight != None))
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [v for v in all_var_list if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")]
    vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vff")]
    assert len(var_list) == len(vf_var_list) + 1
    d_adam = MpiAdam(reward_giver.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv)
                                                    for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    if rank == 0:
        print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, reward_giver, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    # g_loss_stats = stats(loss_names)
    # d_loss_stats = stats(reward_giver.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        U.load_variables(pretrained_weight, variables=pi.get_variables())

    best=-2000
    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break


        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p
        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for _ in range(g_step):
            seg = seg_gen.__next__()

            #report stats and save policy if any good
            lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"])  # local values
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
            lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
            true_rewbuffer.extend(true_rets)
            lenbuffer.extend(lens)
            rewbuffer.extend(rews)

            true_rew_avg = np.mean(true_rewbuffer)
            logger.record_tabular("EpLenMean", np.mean(lenbuffer))
            logger.record_tabular("EpRewMean", np.mean(rewbuffer))
            logger.record_tabular("EpTrueRewMean", true_rew_avg)
            logger.record_tabular("EpThisIter", len(lens))
            episodes_so_far += len(lens)
            timesteps_so_far += sum(lens)
            iters_so_far += 1

            logger.record_tabular("EpisodesSoFar", episodes_so_far)
            logger.record_tabular("TimestepsSoFar", timesteps_so_far)
            logger.record_tabular("TimeElapsed", time.time() - tstart)
            logger.record_tabular("Best so far", best)

            # Save model
            if ckpt_dir is not None and true_rew_avg >= best and len(true_rewbuffer) > 30:
                best = true_rew_avg
                fname = os.path.join(ckpt_dir, task_name)
                os.makedirs(os.path.dirname(fname), exist_ok=True)
                pi.save_policy(fname)


            #compute gradient towards next policy
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
            vpredbefore = seg["vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std()  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new()  # set old parameter values to new parameter values
            
            *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=False)
                assert np.isfinite(stepdir).all()
                shs = .5*stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                    assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                                                         include_final_partial_batch=False, batch_size=128):
                    if hasattr(pi, "ob_rms"):
                        pi.ob_rms.update(mbob)  # update running mean/std for policy
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        g_losses = meanlosses
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
        # ------------------ Update D ------------------
        batch_size = len(ob) // d_step
        d_losses = []  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches((ob, ac),
                                                      include_final_partial_batch=False,
                                                      batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.next_batch(len(ob_batch))
            # update running mean/std for reward_giver
            if hasattr(reward_giver, "obs_rms"): reward_giver.obs_rms.update(np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = reward_giver.lossandgrad(ob_batch, ac_batch, ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, reward_giver.loss_name))
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        if rank == 0:
            logger.dump_tabular()
Пример #6
0
def learn(
        *,
        network,
        env,
        eval_env,
        total_timesteps,
        timesteps_per_batch=1024,  # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0,  # advantage estimation
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        log_path=None,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0

    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    if isinstance(network, str):
        network = get_network_builder(network)(**network_kwargs)

    with tf.name_scope("pi"):
        pi_policy_network = network(ob_space.shape)
        pi_value_network = network(ob_space.shape)
        pi = PolicyWithValue(ac_space, pi_policy_network, pi_value_network)
    with tf.name_scope("oldpi"):
        old_pi_policy_network = network(ob_space.shape)
        old_pi_value_network = network(ob_space.shape)
        oldpi = PolicyWithValue(ac_space, old_pi_policy_network,
                                old_pi_value_network)

    pi_var_list = pi_policy_network.trainable_variables + list(
        pi.pdtype.trainable_variables)
    old_pi_var_list = old_pi_policy_network.trainable_variables + list(
        oldpi.pdtype.trainable_variables)
    vf_var_list = pi_value_network.trainable_variables + pi.value_fc.trainable_variables
    old_vf_var_list = old_pi_value_network.trainable_variables + oldpi.value_fc.trainable_variables

    if load_path is not None:
        load_path = osp.expanduser(load_path)
        ckpt = tf.train.Checkpoint(model=pi)
        manager = tf.train.CheckpointManager(ckpt, load_path, max_to_keep=None)
        ckpt.restore(manager.latest_checkpoint)

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(pi_var_list)
    set_from_flat = U.SetFromFlat(pi_var_list)
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]
    shapes = [var.get_shape().as_list() for var in pi_var_list]

    def assign_old_eq_new():
        for pi_var, old_pi_var in zip(pi_var_list, old_pi_var_list):
            old_pi_var.assign(pi_var)
        for vf_var, old_vf_var in zip(vf_var_list, old_vf_var_list):
            old_vf_var.assign(vf_var)

    @tf.function
    def compute_lossandgrad(ob, ac, atarg):
        with tf.GradientTape() as tape:
            old_policy_latent = oldpi.policy_network(ob)
            old_pd, _ = oldpi.pdtype.pdfromlatent(old_policy_latent)
            policy_latent = pi.policy_network(ob)
            pd, _ = pi.pdtype.pdfromlatent(policy_latent)
            kloldnew = old_pd.kl(pd)
            ent = pd.entropy()
            meankl = tf.reduce_mean(kloldnew)
            meanent = tf.reduce_mean(ent)
            entbonus = ent_coef * meanent
            ratio = tf.exp(pd.logp(ac) - old_pd.logp(ac))
            surrgain = tf.reduce_mean(ratio * atarg)
            optimgain = surrgain + entbonus
            losses = [optimgain, meankl, entbonus, surrgain, meanent]
        gradients = tape.gradient(optimgain, pi_var_list)
        return losses + [U.flatgrad(gradients, pi_var_list)]

    @tf.function
    def compute_losses(ob, ac, atarg):
        old_policy_latent = oldpi.policy_network(ob)
        old_pd, _ = oldpi.pdtype.pdfromlatent(old_policy_latent)
        policy_latent = pi.policy_network(ob)
        pd, _ = pi.pdtype.pdfromlatent(policy_latent)
        kloldnew = old_pd.kl(pd)
        ent = pd.entropy()
        meankl = tf.reduce_mean(kloldnew)
        meanent = tf.reduce_mean(ent)
        entbonus = ent_coef * meanent
        ratio = tf.exp(pd.logp(ac) - old_pd.logp(ac))
        surrgain = tf.reduce_mean(ratio * atarg)
        optimgain = surrgain + entbonus
        losses = [optimgain, meankl, entbonus, surrgain, meanent]
        return losses

    #ob shape should be [batch_size, ob_dim], merged nenv
    #ret shape should be [batch_size]
    @tf.function
    def compute_vflossandgrad(ob, ret):
        with tf.GradientTape() as tape:
            pi_vf = pi.value(ob)
            vferr = tf.reduce_mean(tf.square(pi_vf - ret))
        return U.flatgrad(tape.gradient(vferr, vf_var_list), vf_var_list)

    @tf.function
    def compute_fvp(flat_tangent, ob, ac, atarg):
        with tf.GradientTape() as outter_tape:
            with tf.GradientTape() as inner_tape:
                old_policy_latent = oldpi.policy_network(ob)
                old_pd, _ = oldpi.pdtype.pdfromlatent(old_policy_latent)
                policy_latent = pi.policy_network(ob)
                pd, _ = pi.pdtype.pdfromlatent(policy_latent)
                kloldnew = old_pd.kl(pd)
                meankl = tf.reduce_mean(kloldnew)
            klgrads = inner_tape.gradient(meankl, pi_var_list)
            start = 0
            tangents = []
            for shape in shapes:
                sz = U.intprod(shape)
                tangents.append(
                    tf.reshape(flat_tangent[start:start + sz], shape))
                start += sz
            gvp = tf.add_n([
                tf.reduce_sum(g * tangent)
                for (g, tangent) in zipsame(klgrads, tangents)
            ])
        hessians_products = outter_tape.gradient(gvp, pi_var_list)
        fvp = U.flatgrad(hessians_products, pi_var_list)
        return fvp

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    logdir = log_path + '/evaluator'
    modeldir = log_path + '/models'
    if not os.path.exists(logdir):
        os.makedirs(logdir)
    if not os.path.exists(modeldir):
        os.makedirs(modeldir)
    evaluator = Evaluator(env=eval_env, model=pi, logdir=logdir)
    max_inner_iter = 500000 if env.spec.id == 'InvertedDoublePendulum-v2' else 3000000
    epoch = vf_iters
    batch_size = timesteps_per_batch
    mb_size = 256
    inner_iter_per_iter = epoch * int(batch_size / mb_size)
    max_iter = int(max_inner_iter / inner_iter_per_iter)
    eval_num = 150
    eval_interval = save_interval = int(
        int(max_inner_iter / eval_num) / inner_iter_per_iter)

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    for update in range(1, max_iter + 1):
        if callback: callback(locals(), globals())
        # if total_timesteps and timesteps_so_far >= total_timesteps:
        #     break
        # elif max_episodes and episodes_so_far >= max_episodes:
        #     break
        # elif max_iters and iters_so_far >= max_iters:
        #     break
        logger.log("********** Iteration %i ************" % iters_so_far)
        if (update - 1) % eval_interval == 0:
            evaluator.run_evaluation(update - 1)
        if (update - 1) % save_interval == 0:
            ckpt = tf.train.Checkpoint(model=pi)
            ckpt.save(modeldir + '/ckpt_ite' + str((update - 1)))

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        ob = sf01(ob)
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        args = ob, ac, atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs).numpy()) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = g.numpy()
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
            assert np.isfinite(stepdir).all()
            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(
                    np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" %
                           (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=mb_size):
                    mbob = sf01(mbob)
                    g = allmean(compute_vflossandgrad(mbob, mbret).numpy())
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()

    return pi
Пример #7
0
def run_pg(
        algo,
        network,
        env,
        total_timesteps,
        timesteps_per_batch,
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0, # advantage estimation
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters =3,
        max_episodes=0, max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        **network_kwargs
        ):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    MPI = None
    nworkers = 1
    rank = 0

    cpus_per_worker = 1
    U.get_session(config=tf.ConfigProto(
            allow_soft_placement=True,
            inter_op_parallelism_threads=cpus_per_worker,
            intra_op_parallelism_threads=cpus_per_worker
    ))


    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(get_variables("oldpi"), get_variables("pi"))])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

    if sum([max_iters>0, total_timesteps>0, max_episodes>0])==0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************"%iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"] # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]
        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new() # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0)
            assert np.isfinite(stepdir).all()
            shs = .5*stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()            

            """ changes here """
            if algo=='TNPG':
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
            else:
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .8
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
            # changes end
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
                assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("Opt_KL", max_kl)
        logger.record_tabular("gamma", gamma)
        logger.record_tabular("lam", lam)
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank==0:
            logger.dump_tabular()

    return pi
Пример #8
0
def learn(env,
          policy_func,
          reward_giver,
          expert_dataset,
          rank,
          g_step,
          d_step,
          entcoeff,
          save_per_iter,
          timesteps_per_batch,
          ckpt_dir,
          log_dir,
          task_name,
          gamma,
          lam,
          max_kl,
          cg_iters,
          cg_damping=1e-2,
          vf_stepsize=3e-4,
          d_stepsize=3e-4,
          vf_iters=3,
          max_timesteps=0,
          max_episodes=0,
          max_iters=0,
          callback=None):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space)
    saver = tf.train.Saver(
        var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='pi'))
    saver.restore(tf.get_default_session(), U_.getPath() + '/model/bc.ckpt')

    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list
        if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")
    ]
    vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vff")]
    assert len(var_list) == len(vf_var_list) + 1
    d_adam = MpiAdam(reward_giver.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    if rank == 0:
        print("Init param sum", th_init.sum())

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     reward_giver,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(reward_giver.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            fname = os.path.join(ckpt_dir, task_name)
            print('save model as ', fname)
            try:
                os.makedirs(os.path.dirname(fname))
            except OSError:
                # folder already exists
                pass
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname)

        print("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        # ------------------ Update G ------------------
        print("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.next()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                tmp_result = compute_lossandgrad(seg["ob"], seg["ac"], atarg)
                lossbefore = tmp_result[:-1]
                g = tmp_result[-1]
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                print("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # print("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = allmean(
                        np.array(compute_losses(seg["ob"], seg["ac"], atarg)))
                    surr = meanlosses[0]
                    kl = meanlosses[1]
                    improve = surr - surrbefore
                    print("Expected: %.3f Actual: %.3f" %
                          (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        print("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        print("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        print("surrogate didn't improve. shrinking step.")
                    else:
                        print("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    print("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        print("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        # ------------------ Update D ------------------
        print("Optimizing Discriminator...")
        print(fmt_row(13, reward_giver.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in tqdm(
                dataset.iterbatches((ob, ac),
                                    include_final_partial_batch=False,
                                    batch_size=batch_size)):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for reward_giver
            if hasattr(reward_giver, "obs_rms"):
                reward_giver.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))
            tmp_result = reward_giver.lossandgrad(ob_batch, ac_batch,
                                                  ob_expert, ac_expert)
            newlosses = tmp_result[:-1]
            g = tmp_result[-1]
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        print(fmt_row(13, np.mean(d_losses, axis=0)))

        timesteps_so_far += len(seg['ob'])
        iters_so_far += 1

        print("EpisodesSoFar", episodes_so_far)
        print("TimestepsSoFar", timesteps_so_far)
        print("TimeElapsed", time.time() - tstart)
def learn(
        env,
        policy_fn,
        *,
        timesteps_per_batch,  # what to train on
        epsilon,
        beta,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        TRPO=False):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    discrete_ac_space = isinstance(ac_space, gym.spaces.Discrete)
    print("ob_space: " + str(ob_space))
    print("ac_space: " + str(ac_space))
    pi = policy_fn("pi", ob_space, ac_space)
    oldpi = policy_fn("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    old_entropy = oldpi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "Entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    all_var_list = [
        v for v in all_var_list if v.name.split("/")[0].startswith("pi")
    ]
    var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("pol")
    ]
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    #????gvp and fvp???
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Initialize eta, omega optimizer
    if discrete_ac_space:
        init_eta = 1
        init_omega = 0.5
        eta_omega_optimizer = EtaOmegaOptimizerDiscrete(
            beta, epsilon, init_eta, init_omega)
    else:
        init_eta = 0.5
        init_omega = 2.0
        #????eta_omega_optimizer details?????
        eta_omega_optimizer = EtaOmegaOptimizer(beta, epsilon, init_eta,
                                                init_omega)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        #print(ob[:20])
        #print(ac[:20])

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            print(pi.ob_rms.mean)
            pi.ob_rms.update(ob)  # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
            assert np.isfinite(stepdir).all()

            if TRPO:
                #
                # TRPO specific code.
                # Find correct step size using line search
                #
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / epsilon)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > epsilon * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                '''else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)'''
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

            else:
                #
                # COPOS specific implementation.
                #
                copos_update_dir = stepdir

                # Split direction into log-linear 'w_theta' and non-linear 'w_beta' parts
                w_theta, w_beta = pi.split_w(copos_update_dir)

                tmp_ob = np.zeros(
                    (1, ) + env.observation_space.shape
                )  # We assume that entropy does not depend on the NN

                # Optimize eta and omega
                if discrete_ac_space:
                    entropy = lossbefore[4]
                    #entropy = - 1/timesteps_per_batch * np.sum(np.sum(pi.get_action_prob(ob) * pi.get_log_action_prob(ob), axis=1))
                    eta, omega = eta_omega_optimizer.optimize(
                        pi.compute_F_w(ob, copos_update_dir),
                        pi.get_log_action_prob(ob), timesteps_per_batch,
                        entropy)
                else:
                    Waa, Wsa = pi.w2W(w_theta)
                    wa = pi.get_wa(ob, w_beta)

                    varphis = pi.get_varphis(ob)

                    #old_ent = old_entropy.eval({oldpi.ob: tmp_ob})[0]
                    old_ent = lossbefore[4]
                    eta, omega = eta_omega_optimizer.optimize(
                        w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                        pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent)
                logger.log("Initial eta: " + str(eta) + " and omega: " +
                           str(omega))

                current_theta_beta = get_flat()
                prev_theta, prev_beta = pi.all_to_theta_beta(
                    current_theta_beta)

                if discrete_ac_space:
                    # Do a line search for both theta and beta parameters by adjusting only eta
                    eta = eta_search(w_theta, w_beta, eta, omega, allmean,
                                     compute_losses, get_flat, set_from_flat,
                                     pi, epsilon, args, discrete_ac_space)
                    logger.log("Updated eta, eta: " + str(eta))
                    set_from_flat(pi.theta_beta_to_all(prev_theta, prev_beta))
                    # Find proper omega for new eta. Use old policy parameters first.
                    eta, omega = eta_omega_optimizer.optimize(
                        pi.compute_F_w(ob, copos_update_dir),
                        pi.get_log_action_prob(ob), timesteps_per_batch,
                        entropy, eta)
                    logger.log("Updated omega, eta: " + str(eta) +
                               " and omega: " + str(omega))

                    # do line search for ratio for non-linear "beta" parameter values
                    #ratio = beta_ratio_line_search(w_theta, w_beta, eta, omega, allmean, compute_losses, get_flat, set_from_flat, pi,
                    #                     epsilon, beta, args)
                    # set ratio to 1 if we do not use beta ratio line search
                    ratio = 1
                    #print("ratio from line search: " + str(ratio))
                    cur_theta = (eta * prev_theta +
                                 w_theta.reshape(-1, )) / (eta + omega)
                    cur_beta = prev_beta + ratio * w_beta.reshape(-1, ) / eta
                else:
                    for i in range(2):
                        # Do a line search for both theta and beta parameters by adjusting only eta
                        eta = eta_search(w_theta, w_beta, eta, omega, allmean,
                                         compute_losses, get_flat,
                                         set_from_flat, pi, epsilon, args)
                        logger.log("Updated eta, eta: " + str(eta) +
                                   " and omega: " + str(omega))

                        # Find proper omega for new eta. Use old policy parameters first.
                        set_from_flat(
                            pi.theta_beta_to_all(prev_theta, prev_beta))
                        eta, omega = \
                            eta_omega_optimizer.optimize(w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                                                         pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent, eta)
                        logger.log("Updated omega, eta: " + str(eta) +
                                   " and omega: " + str(omega))

                    # Use final policy
                    logger.log("Final eta: " + str(eta) + " and omega: " +
                               str(omega))
                    cur_theta = (eta * prev_theta +
                                 w_theta.reshape(-1, )) / (eta + omega)
                    cur_beta = prev_beta + w_beta.reshape(-1, ) / eta

                paramnew = allmean(pi.theta_beta_to_all(cur_theta, cur_beta))
                set_from_flat(paramnew)
                meanlosses = surr, kl, *_ = allmean(
                    np.array(compute_losses(*args)))
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (paramnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
                ##copos specific over
#cg over

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)


#policy update over
        with timed("vf"):
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        print("Reward max: " + str(max(rewbuffer)))
        print("Reward min: " + str(min(rewbuffer)))

        logger.record_tabular(
            "EpLenMean",
            np.mean(lenbuffer) if np.sum(lenbuffer) != 0.0 else 0.0)
        logger.record_tabular(
            "EpRewMean",
            np.mean(rewbuffer) if np.sum(rewbuffer) != 0.0 else 0.0)
        logger.record_tabular(
            "AverageReturn",
            np.mean(rewbuffer) if np.sum(rewbuffer) != 0.0 else 0.0)
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
Пример #10
0
        def dynamics_train(index, state, action, next_state, dyn_weights, alpha):

            j = index

            size_num = np.size(state, axis=0)
            dynamics_state_and_action = np.concatenate((state, action), axis=1)

            args = dynamics_state_and_action, next_state

            fvpargs = [arr[::5] for arr in args]

            def MDP_fisher_vector_product(p):
                return allmean(MDP_compute_fvp[j](p, *fvpargs)) + cg_damping * p

            MDP_assign_old_eq_new[j]()

            surr_begin = allmean(np.array(compute_likelihood(dyn_weights, K, *args, size_num)))

            surr_begin_l2_norm = allmean(np.array(MDP_compute_l2_norm_sum()))

            surr_begin = surr_begin - alpha*surr_begin_l2_norm

            g = ensemble_compute_grad(dyn_weights, K, *args, size_num, j)

            g_l2_norm = MDP_compute_l2_norm_grad[j]()
            g = g - alpha*g_l2_norm

            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                stepdir = cg(MDP_fisher_vector_product, g, cg_iters=cg_iters, verbose=rank == 0)  # s \simeq A^{-1}g
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(MDP_fisher_vector_product(stepdir))  # shs = 1/2 s^{T}As
                lm = np.sqrt(shs / max_kl)  # lm = 1 / \beta
                fullstep = stepdir / lm  # fullstep = \beta s, and then shrink exponentially (10 times)
                expectedimprove = g.dot(fullstep)
                surrbefore = surr_begin
                stepsize = 1.0
                phibefore = MDP_get_flat[j]()
                for _ in range(10):
                    phinew = phibefore + fullstep * stepsize
                    MDP_set_from_flat[j](phinew)
                    surr = allmean(np.array(compute_likelihood(dyn_weights, K, *args, size_num)))
                    surr_l2_norm = allmean(np.array(MDP_compute_l2_norm_sum()))
                    surr = surr - alpha * surr_l2_norm
                    kl = allmean(np.array(MDP_compute_kl[j](*args)))
                    meanlosses = surr, kl
                    improve = surr - surrbefore
                    if not np.isfinite(meanlosses).all():
                        pass
                    elif kl > max_kl * 1.5:
                        pass
                    elif improve < 0:
                        pass
                    else:
                        break
                    stepsize *= .5
                else:
                    MDP_set_from_flat[j](phibefore)
                print("Updating the model %i is completed" % (j + 1))
def learn(env,
          policy_func,
          reward_giver,
          expert_dataset,
          rank,
          pretrained,
          pretrained_weight,
          *,
          g_step,
          d_step,
          entcoeff,
          save_per_iter,
          ckpt_dir,
          log_dir,
          timesteps_per_batch,
          task_name,
          gamma,
          lam,
          max_kl,
          cg_iters,
          cg_damping=1e-2,
          vf_stepsize=3e-4,
          d_stepsize=3e-4,
          vf_iters=3,
          max_timesteps=0,
          max_episodes=0,
          max_iters=0,
          vf_batchsize=128,
          callback=None,
          freeze_g=False,
          freeze_d=False,
          semi_dataset=None,
          semi_loss=False):

    semi_loss = semi_loss and semi_dataset is not None
    l2_w = 0.1

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)

    if rank == 0:
        writer = U.file_writer(log_dir)

        # print all the hyperparameters in the log...
        log_dict = {
            "expert trajectories": expert_dataset.num_traj,
            "algo": "trpo",
            "threads": nworkers,
            "timesteps_per_batch": timesteps_per_batch,
            "timesteps_per_thread": -(-timesteps_per_batch // nworkers),
            "entcoeff": entcoeff,
            "vf_iters": vf_iters,
            "vf_batchsize": vf_batchsize,
            "vf_stepsize": vf_stepsize,
            "d_stepsize": d_stepsize,
            "g_step": g_step,
            "d_step": d_step,
            "max_kl": max_kl,
            "gamma": gamma,
            "lam": lam,
            "l2_weight": l2_w
        }

        if semi_dataset is not None:
            log_dict["semi trajectories"] = semi_dataset.num_traj
        if hasattr(semi_dataset, 'info'):
            log_dict["semi_dataset_info"] = semi_dataset.info

        # print them all together for csv
        logger.log(",".join([str(elem) for elem in log_dict]))
        logger.log(",".join([str(elem) for elem in log_dict.values()]))

        # also print them separately for easy reading:
        for elem in log_dict:
            logger.log(str(elem) + ": " + str(log_dict[elem]))

    # divide the timesteps to the threads
    timesteps_per_batch = -(-timesteps_per_batch // nworkers
                            )  # get ceil of division

    # Setup losses and stuff
    # ----------------------------------------
    if semi_dataset:
        ob_space = semi_ob_space(env, semi_size=semi_dataset.semi_size)
    else:
        ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi",
                     ob_space=ob_space,
                     ac_space=ac_space,
                     reuse=(pretrained_weight is not None))
    oldpi = policy_func("oldpi", ob_space=ob_space, ac_space=ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    vf_losses = [vferr]
    vf_loss_names = ["vf_loss"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list
        if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")
    ]
    vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vf")]
    assert len(var_list) == len(vf_var_list) + 1

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_vf_losses = U.function([ob, ac, atarg, ret], losses + vf_losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], vf_losses +
                                       [U.flatgrad(vferr, vf_var_list)])

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)
    success_buffer = deque(maxlen=40)
    l2_rewbuffer = deque(
        maxlen=40) if semi_loss and semi_dataset is not None else None
    total_rewbuffer = deque(
        maxlen=40) if semi_loss and semi_dataset is not None else None

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    not_update = 1 if not freeze_d else 0  # do not update G before D the first time
    # if provide pretrained weight
    loaded = False
    if not U.load_checkpoint_variables(pretrained_weight):
        if U.load_checkpoint_variables(pretrained_weight,
                                       check_prefix=get_il_prefix()):
            if rank == 0:
                logger.log("loaded checkpoint variables from " +
                           pretrained_weight)
            loaded = True
    else:
        loaded = True

    if loaded:
        not_update = 0 if any(
            [x.op.name.find("adversary") != -1
             for x in U.ALREADY_INITIALIZED]) else 1
        if pretrained_weight and pretrained_weight.rfind("iter_") and \
                pretrained_weight[pretrained_weight.rfind("iter_") + len("iter_"):].isdigit():
            curr_iter = int(
                pretrained_weight[pretrained_weight.rfind("iter_") +
                                  len("iter_"):]) + 1
            print("loaded checkpoint at iteration: " + str(curr_iter))
            iters_so_far = curr_iter
            timesteps_so_far = iters_so_far * timesteps_per_batch

    d_adam = MpiAdam(reward_giver.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    U.initialize()

    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    if rank == 0:
        print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(
        pi,
        env,
        reward_giver,
        timesteps_per_batch,
        stochastic=True,
        semi_dataset=semi_dataset,
        semi_loss=semi_loss)  # ADD L2 loss to semi trajectories

    g_loss_stats = stats(loss_names + vf_loss_names)
    d_loss_stats = stats(reward_giver.loss_name)
    ep_names = ["True_rewards", "Rewards", "Episode_length", "Success"]
    if semi_loss and semi_dataset is not None:
        ep_names.append("L2_loss")
        ep_names.append("total_rewards")
    ep_stats = stats(ep_names)

    if rank == 0:
        start_time = time.time()
        ch_count = 0
        env_type = env.env.env.__class__.__name__

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            fname = os.path.join(ckpt_dir, task_name)
            if env_type.find(
                    "Pendulum"
            ) != -1 or save_per_iter != 1:  # allow pendulum to save all iterations
                fname = os.path.join(ckpt_dir, 'iter_' + str(iters_so_far),
                                     'iter_' + str(iters_so_far))
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname, write_meta_graph=False)

        if rank == 0 and time.time(
        ) - start_time >= 3600 * ch_count:  # save a different checkpoint every hour
            fname = os.path.join(ckpt_dir, 'hour' + str(ch_count).zfill(3))
            fname = os.path.join(fname, 'iter_' + str(iters_so_far))
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname, write_meta_graph=False)
            ch_count += 1

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for curr_step in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()

            seg["rew"] = seg["rew"] - seg["l2_loss"] * l2_w

            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret, full_ob = seg["ob"], seg["ac"], seg[
                "adv"], seg["tdlamret"], seg["full_ob"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate
            d = Dataset(dict(ob=full_ob, ac=ac, atarg=atarg, vtarg=tdlamret),
                        shuffle=True)

            if not_update:
                break  # stop G from updating

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(full_ob)  # update running mean/std for policy

            args = seg["full_ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    if rank == 0:
                        print("Generator entropy " + str(meanlosses[4]) +
                              ", loss " + str(meanlosses[2]))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                logger.log(fmt_row(13, vf_loss_names))
                for _ in range(vf_iters):
                    vf_b_losses = []
                    for batch in d.iterate_once(vf_batchsize):
                        mbob = batch["ob"]
                        mbret = batch["vtarg"]

                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        *newlosses, g = compute_vflossandgrad(mbob, mbret)
                        g = allmean(g)
                        newlosses = allmean(np.array(newlosses))

                        vfadam.update(g, vf_stepsize)
                        vf_b_losses.append(newlosses)
                    logger.log(fmt_row(13, np.mean(vf_b_losses, axis=0)))

            logger.log("Evaluating losses...")
            losses = []
            for batch in d.iterate_once(vf_batchsize):
                newlosses = compute_vf_losses(batch["ob"], batch["ac"],
                                              batch["atarg"], batch["vtarg"])
                losses.append(newlosses)
            meanlosses, _, _ = mpi_moments(losses, axis=0)

            #########################
            '''
            For evaluation during training.
            Can be commented out for faster training...
            '''
            for ob_batch, ac_batch, full_ob_batch in dataset.iterbatches(
                (ob, ac, full_ob),
                    include_final_partial_batch=False,
                    batch_size=len(ob)):
                ob_expert, ac_expert = expert_dataset.get_next_batch(
                    len(ob_batch))
                exp_rew = 0
                for obs, acs in zip(ob_expert, ac_expert):
                    exp_rew += 1 - np.exp(
                        -reward_giver.get_reward(obs, acs)[0][0])
                mean_exp_rew = exp_rew / len(ob_expert)

                gen_rew = 0
                for obs, acs, full_obs in zip(ob_batch, ac_batch,
                                              full_ob_batch):
                    gen_rew += 1 - np.exp(
                        -reward_giver.get_reward(obs, acs)[0][0])
                mean_gen_rew = gen_rew / len(ob_batch)
                if rank == 0:
                    logger.log("Generator step " + str(curr_step) +
                               ": Dicriminator reward of expert traj " +
                               str(mean_exp_rew) + " vs gen traj " +
                               str(mean_gen_rew))
            #########################

        if not not_update:
            g_losses = meanlosses
            for (lossname, lossval) in zip(loss_names + vf_loss_names,
                                           meanlosses):
                logger.record_tabular(lossname, lossval)
            logger.record_tabular("ev_tdlam_before",
                                  explained_variance(vpredbefore, tdlamret))

        # ------------------ Update D ------------------
        if not freeze_d:
            logger.log("Optimizing Discriminator...")
            batch_size = len(ob) // d_step
            d_losses = [
            ]  # list of tuples, each of which gives the loss for a minibatch
            for ob_batch, ac_batch, full_ob_batch in dataset.iterbatches(
                (ob, ac, full_ob),
                    include_final_partial_batch=False,
                    batch_size=batch_size):
                ob_expert, ac_expert = expert_dataset.get_next_batch(
                    len(ob_batch))
                #########################
                '''
                For evaluation during training.
                Can be commented out for faster training...
                '''
                exp_rew = 0
                for obs, acs in zip(ob_expert, ac_expert):
                    exp_rew += 1 - np.exp(
                        -reward_giver.get_reward(obs, acs)[0][0])
                mean_exp_rew = exp_rew / len(ob_expert)

                gen_rew = 0

                for obs, acs in zip(ob_batch, ac_batch):
                    gen_rew += 1 - np.exp(
                        -reward_giver.get_reward(obs, acs)[0][0])

                mean_gen_rew = gen_rew / len(ob_batch)
                if rank == 0:
                    logger.log("Dicriminator reward of expert traj " +
                               str(mean_exp_rew) + " vs gen traj " +
                               str(mean_gen_rew))
                #########################
                # update running mean/std for reward_giver
                if hasattr(reward_giver, "obs_rms"):
                    reward_giver.obs_rms.update(
                        np.concatenate((ob_batch, ob_expert), 0))
                loss_input = (ob_batch, ac_batch, ob_expert, ac_expert)
                *newlosses, g = reward_giver.lossandgrad(*loss_input)
                d_adam.update(allmean(g), d_stepsize)
                d_losses.append(newlosses)
            logger.log(fmt_row(13, reward_giver.loss_name))
            logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"],
                   seg["ep_success"], seg["ep_semi_loss"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets, success, semi_losses = map(
            flatten_lists, zip(*listoflrpairs))

        # success
        success = [
            float(elem) for elem in success
            if isinstance(elem, (int, float, bool))
        ]  # remove potential None types
        if not success:
            success = [-1]  # set success to -1 if env has no success flag
        success_buffer.extend(success)

        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        if semi_loss and semi_dataset is not None:
            semi_losses = [elem * l2_w for elem in semi_losses]
            total_rewards = rews
            total_rewards = [
                re_elem - l2_elem
                for re_elem, l2_elem in zip(total_rewards, semi_losses)
            ]
            l2_rewbuffer.extend(semi_losses)
            total_rewbuffer.extend(total_rewards)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpSuccess", np.mean(success_buffer))

        if semi_loss and semi_dataset is not None:
            logger.record_tabular("EpSemiLoss", np.mean(l2_rewbuffer))
            logger.record_tabular("EpTotalReward", np.mean(total_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        logger.record_tabular("ItersSoFar", iters_so_far)

        if rank == 0:
            logger.dump_tabular()
            if not not_update:
                g_loss_stats.add_all_summary(writer, g_losses, iters_so_far)
            if not freeze_d:
                d_loss_stats.add_all_summary(writer, np.mean(d_losses, axis=0),
                                             iters_so_far)

            # default buffers
            ep_buffers = [
                np.mean(true_rewbuffer),
                np.mean(rewbuffer),
                np.mean(lenbuffer),
                np.mean(success_buffer)
            ]

            if semi_loss and semi_dataset is not None:
                ep_buffers.append(np.mean(l2_rewbuffer))
                ep_buffers.append(np.mean(total_rewbuffer))

            ep_stats.add_all_summary(writer, ep_buffers, iters_so_far)

        if not_update and not freeze_g:
            not_update -= 1
Пример #12
0
    def learn(self):
    
    # Prepare for rollouts
    # ----------------------------------------
        self.seg_gen = traj_segment_generator(self.pi, self.env, self.timesteps_per_batch, stochastic=True)
        
        return None
        episodes_so_far = 0
        timesteps_so_far = 0
        iters_so_far = 0
        tstart = time.time()
        lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
        rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

        assert sum([self.max_iters>0, self.max_timesteps>0, self.max_episodes>0])==1

        while True:        
        
            if self.max_timesteps and timesteps_so_far >= self.max_timesteps:
                break
            elif self.max_episodes and episodes_so_far >= self.max_episodes:
                break
            elif self.max_iters and iters_so_far >= self.max_iters:
                break      
            elif self.max_epi_avg and len(lenbuffer)>0 and np.mean(lenbuffer)>= self.max_epi_avg:
                break
            
            logger.log("********** Iteration %i ************"%iters_so_far)

            with self.timed("sampling"):
                seg = seg_gen.__next__()
            
            add_vtarg_and_adv(seg, self.gamma, self.lam)

            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            self.ob, self.ac, self.atarg, self.tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
            self.vpredbefore = seg["vpred"] # predicted value function before udpate
            self.atarg = (self.atarg - self.atarg.mean()) / self.atarg.std() # standardized advantage function estimate

            if hasattr(self.pi, "ret_rms"): self.pi.ret_rms.update(self.tdlamret)
            if hasattr(self.pi, "ob_rms"): self.pi.ob_rms.update(self.ob) # update running mean/std for policy

            args = seg["ob"], seg["ac"], self.atarg
            self.fvpargs = [arr[::5] for arr in args]
        
            
        
            self.assign_old_eq_new() # set old parameter values to new parameter values
            with self.timed("computegrad"):
                *lossbefore, g = self.compute_lossandgrad(*args)
            
            
            lossbefore = self.allmean(np.array(lossbefore))
            g = self.allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
            
                with self.timed("cg"):
                    stepdir = cg(self.fisher_vector_product, g, cg_iters=self.cg_iters, verbose=self.rank==0)
                
                assert np.isfinite(stepdir).all()
                shs = .5*stepdir.dot(self.fisher_vector_product(stepdir))
                lm = np.sqrt(shs / self.max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = self.get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    self.set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = self.allmean(np.array(self.compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > self.max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    self.set_from_flat(thbefore)
                if self.nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), self.vfadam.getflat().sum())) # list of tuples
                    assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
                    
            for (lossname, lossval) in zip(self.loss_names, meanlosses):
                logger.record_tabular(lossname, lossval)

            with self.timed("vf"):

                for _ in range(self.vf_iters):
                    for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]), 
                    include_final_partial_batch=False, batch_size=64):
                        g = self.allmean(self.compute_vflossandgrad(mbob, mbret))
                        self.vfadam.update(g, self.vf_stepsize)

            logger.record_tabular("ev_tdlam_before", explained_variance(self.vpredbefore, self.tdlamret))

            lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
            lens, rews = map(flatten_lists, zip(*listoflrpairs))
            lenbuffer.extend(lens)
            rewbuffer.extend(rews)

            logger.record_tabular("EpLenMean", np.mean(lenbuffer))
            logger.record_tabular("EpRewMean", np.mean(rewbuffer))
            logger.record_tabular("EpThisIter", len(lens))
            episodes_so_far += len(lens)
            timesteps_so_far += sum(lens)
            iters_so_far += 1

            logger.record_tabular("EpisodesSoFar", episodes_so_far)
            logger.record_tabular("TimestepsSoFar", timesteps_so_far)
            logger.record_tabular("TimeElapsed", time.time() - tstart)

            if self.rank==0:
                logger.dump_tabular()
    def update(self, obs, actions, atarg, returns, vpredbefore, nb):
        # Prepare data
        obs = tf.constant(obs)
        actions = tf.constant(actions)
        atarg = tf.constant(atarg)
        returns = tf.constant(returns)
        estimates = tf.constant(self.estimates[nb])
        multipliers = tf.constant(self.multipliers[nb])
        comm = self.comm_matrix[self.comm_matrix[:, nb] != 0][0, self.agent.id]
        args, synargs = (obs, actions, atarg), (estimates, multipliers, comm)
        # Sampling every 5
        fvpargs = [arr[::1] for arr in args]

        def hvp(p):
            fvp = self.compute_fvp(p, *fvpargs).numpy()
            jjvp = self.compute_jjvp(p, *fvpargs).numpy()
            return self.allmean(fvp + jjvp) + self.cg_damping * p

        self.assign_new_eq_old(
        )  # set old parameter values to new parameter values

        with self.timed("computegrad"):
            g = self.compute_vjp(*args, *synargs).numpy()
            g = self.allmean(g)
        lossbefore = self.allmean(
            np.array(self.compute_losses(*args, *synargs)))
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with self.timed("cg"):
                stepdir = cg(hvp, g, cg_iters=self.cg_iters)
            assert np.isfinite(stepdir).all()
            shs = 0.5 * g.dot(stepdir)
            # shs = .5*stepdir.dot(fvp(stepdir))
            lm = np.sqrt(shs / self.max_kl)
            logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            lagrangebefore, surrbefore, syncbefore, klbefore, entbonusbefore, meanentbefore = lossbefore
            stepsize = 1.0
            thbefore = self.get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                self.set_from_flat(thnew)
                meanlosses = lagrange, surr, syncloss, kl, entbonus, meanent = self.allmean(
                    np.array(self.compute_losses(*args, *synargs)))
                improve = lagrangebefore - lagrange
                performance_improve = surr - surrbefore
                sync_improve = syncbefore - syncloss
                print(lagrangebefore, surrbefore, syncbefore, meanentbefore)
                print(lagrange, surr, syncloss, meanent)
                logger.log("Expected: %.3f Actual: %.3f" %
                           (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > self.max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                self.set_from_flat(thbefore)

        # with self.timed("vf"):
        for _ in range(self.vf_iters):
            for (mbob, mbret) in dataset.iterbatches(
                (obs, returns),
                    include_final_partial_batch=False,
                    batch_size=64):
                vg = self.allmean(
                    self.compute_vflossandgrad(mbob, mbret).numpy())
                self.vfadam.update(vg, self.vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, returns))
Пример #14
0
def learn(
        *,
        network,
        env,
        save,
        total_timesteps,
        timesteps_per_batch=1024,  # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0,  # advantage estimation
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_episodes=0,
        max_iters=0,  # ttotal_timestepsime constraint
        callback=None,
        load_path=None,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0

    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    if isinstance(network, str):
        network, network_model = get_network_builder(network)(**network_kwargs)

    with tf.name_scope("pi"):
        pi_policy_network = network(ob_space.shape)
        pi_value_network = network(ob_space.shape)
        pi = PolicyWithValue(ac_space, pi_policy_network, pi_value_network)
    with tf.name_scope("oldpi"):
        old_pi_policy_network = network(ob_space.shape)
        old_pi_value_network = network(ob_space.shape)
        oldpi = PolicyWithValue(ac_space, old_pi_policy_network,
                                old_pi_value_network)

    pi_var_list = pi_policy_network.trainable_variables + list(
        pi.pdtype.trainable_variables)
    old_pi_var_list = old_pi_policy_network.trainable_variables + list(
        oldpi.pdtype.trainable_variables)
    vf_var_list = pi_value_network.trainable_variables + pi.value_fc.trainable_variables
    old_vf_var_list = old_pi_value_network.trainable_variables + oldpi.value_fc.trainable_variables

    if load_path is not None:
        load_path = osp.expanduser(load_path)
        ckpt = tf.train.Checkpoint(model=pi)
        manager = tf.train.CheckpointManager(ckpt, load_path, max_to_keep=None)
        ckpt.restore(manager.latest_checkpoint)

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(pi_var_list)
    set_from_flat = U.SetFromFlat(pi_var_list)
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]
    shapes = [var.get_shape().as_list() for var in pi_var_list]

    def assign_old_eq_new():
        for pi_var, old_pi_var in zip(pi_var_list, old_pi_var_list):
            old_pi_var.assign(pi_var)
        for vf_var, old_vf_var in zip(vf_var_list, old_vf_var_list):
            old_vf_var.assign(vf_var)

    @tf.function
    def compute_lossandgrad(ob, ac, atarg):
        with tf.GradientTape() as tape:
            old_policy_latent = oldpi.policy_network(ob)
            old_pd, _ = oldpi.pdtype.pdfromlatent(old_policy_latent)
            policy_latent = pi.policy_network(ob)
            pd, _ = pi.pdtype.pdfromlatent(policy_latent)
            kloldnew = old_pd.kl(pd)
            ent = pd.entropy()
            meankl = tf.reduce_mean(kloldnew)
            meanent = tf.reduce_mean(ent)
            entbonus = ent_coef * meanent
            ratio = tf.exp(pd.logp(ac) - old_pd.logp(ac))
            surrgain = tf.reduce_mean(ratio * atarg)
            optimgain = surrgain + entbonus
            losses = [optimgain, meankl, entbonus, surrgain, meanent]
        gradients = tape.gradient(optimgain, pi_var_list)
        return losses + [U.flatgrad(gradients, pi_var_list)]

    @tf.function
    def compute_losses(ob, ac, atarg):
        old_policy_latent = oldpi.policy_network(ob)
        old_pd, _ = oldpi.pdtype.pdfromlatent(old_policy_latent)
        policy_latent = pi.policy_network(ob)
        pd, _ = pi.pdtype.pdfromlatent(policy_latent)
        kloldnew = old_pd.kl(pd)
        ent = pd.entropy()
        meankl = tf.reduce_mean(kloldnew)
        meanent = tf.reduce_mean(ent)
        entbonus = ent_coef * meanent
        ratio = tf.exp(pd.logp(ac) - old_pd.logp(ac))
        surrgain = tf.reduce_mean(ratio * atarg)
        optimgain = surrgain + entbonus
        losses = [optimgain, meankl, entbonus, surrgain, meanent]
        return losses

    #ob shape should be [batch_size, ob_dim], merged nenv
    #ret shape should be [batch_size]
    @tf.function
    def compute_vflossandgrad(ob, ret):
        with tf.GradientTape() as tape:
            pi_vf = pi.value(ob)
            vferr = tf.reduce_mean(tf.square(pi_vf - ret))
        return U.flatgrad(tape.gradient(vferr, vf_var_list), vf_var_list)

    @tf.function
    def compute_fvp(flat_tangent, ob, ac, atarg):
        with tf.GradientTape() as outter_tape:
            with tf.GradientTape() as inner_tape:
                old_policy_latent = oldpi.policy_network(ob)
                old_pd, _ = oldpi.pdtype.pdfromlatent(old_policy_latent)
                policy_latent = pi.policy_network(ob)
                pd, _ = pi.pdtype.pdfromlatent(policy_latent)
                kloldnew = old_pd.kl(pd)
                meankl = tf.reduce_mean(kloldnew)
            klgrads = inner_tape.gradient(meankl, pi_var_list)
            start = 0
            tangents = []
            for shape in shapes:
                sz = U.intprod(shape)
                tangents.append(
                    tf.reshape(flat_tangent[start:start + sz], shape))
                start += sz
            gvp = tf.add_n([
                tf.reduce_sum(g * tangent)
                for (g, tangent) in zipsame(klgrads, tangents)
            ])
        hessians_products = outter_tape.gradient(gvp, pi_var_list)
        fvp = U.flatgrad(hessians_products, pi_var_list)
        return fvp

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    # ---------------------- New ----------------------
    rewforbuffer = deque(maxlen=40)
    rewctrlbuffer = deque(maxlen=40)
    rewconbuffer = deque(maxlen=40)
    rewsurbuffer = deque(maxlen=40)

    rewformeanbuf = np.array([])
    rewctrlmeanbuf = np.array([])
    rewconmeanbuf = np.array([])
    rewsurmeanbuf = np.array([])
    # -------------------------------------------------

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # nothing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    x_axis = 0
    x_holder = np.array([])
    rew_holder = np.array([])
    while True:
        if timesteps_so_far > total_timesteps - 1500:  #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
            # Set recording XXXX timesteps before ending
            env = VecVideoRecorder(env,
                                   osp.join(logger.get_dir(), "videos"),
                                   record_video_trigger=lambda x: True,
                                   video_length=200)
            seg_gen = traj_segment_generator(pi, env, timesteps_per_batch)

        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()

        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        ob = sf01(ob)
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        args = ob, ac, atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs).numpy()) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = g.numpy()
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
            assert np.isfinite(stepdir).all()
            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(
                    np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" %
                           (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    mbob = sf01(mbob)
                    g = allmean(compute_vflossandgrad(mbob, mbret).numpy())
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_rets_for"],
                   seg["ep_rets_ctrl"], seg["ep_rets_con"], seg["ep_rets_sur"]
                   )  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews, rews_for, rews_ctrl, rews_con, rews_sur = map(
            flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        # ---------------------- New ----------------------
        rewforbuffer.extend(rews_for)
        rewctrlbuffer.extend(rews_ctrl)
        rewconbuffer.extend(rews_con)
        rewsurbuffer.extend(rews_sur)

        rewformeanbuf = np.append([rewformeanbuf], [np.mean(rewforbuffer)])
        rewctrlmeanbuf = np.append([rewctrlmeanbuf], [np.mean(rewctrlbuffer)])
        rewconmeanbuf = np.append([rewconmeanbuf], [np.mean(rewconbuffer)])
        rewsurmeanbuf = np.append([rewsurmeanbuf], [np.mean(rewsurbuffer)])
        # -------------------------------------------------

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()

        x_axis += 1
        x_holder = np.append([x_holder], [x_axis])
        rew_holder = np.append([rew_holder], [np.mean(rewbuffer)])

    # --------------------------------------- NEW -----------------------------------------------------
    with open("img_rec.txt", "r") as rec:
        cur_gen = rec.read()
        cur_gen = cur_gen.strip()  # remove \n

    dir_of_gens = [
        '1_1', '2_1', '3_1', '1_2', '2_2', '3_2', '1_3', '2_3', '3_3', '1_4',
        '2_4', '3_4', '1_5', '2_5', '3_5', '1_6', '2_6', '3_6', '1_7', '2_7',
        '3_7', '1_8', '2_8', '3_8', '1_9', '2_9', '3_9', '1_10', '2_10',
        '3_10', '1_11', '2_11', '3_11', '1_12', '2_12', '3_12'
    ]
    # -------------------------------------------------------------------------------------------------

    from matplotlib import pyplot as plt
    f = plt.figure(1)
    plt.plot(x_holder, rew_holder)
    plt.title("Rewards for Ant v2")
    plt.grid(True)
    plt.savefig('rewards_for_antv2_{}'.format(cur_gen))

    g = plt.figure(2)
    plt.plot(x_holder, rewformeanbuf, label='Forward Reward')
    plt.plot(x_holder, rewctrlmeanbuf, label='CTRL Cost')
    plt.plot(x_holder, rewconmeanbuf, label='Contact Cost')
    plt.plot(x_holder, rewsurmeanbuf, label='Survive Reward')
    plt.title("Reward Breakdown")
    plt.legend()
    plt.grid(True)
    plt.savefig('rewards_breakdown{}'.format(cur_gen))

    # plt.show()

    # --------------------------------------- NEW -----------------------------------------------------
    elem = int(dir_of_gens.index(cur_gen))
    with open("img_rec.txt", "w") as rec:
        if elem == 35:
            new_elem = 0
        else:
            new_elem = elem + 1
        new_gen = cur_gen.replace(cur_gen, dir_of_gens[new_elem])
        rec.write(new_gen)
    # -------------------------------------------------------------------------------------------------

    #----------------------------------------------------------- SAVE WEIGHTS ------------------------------------------------------------#
    # np.save('val_weights_bias_2_c',val_weights_bias_2_c) # <-------------------------------------------------------------------------------------
    # save = save.replace(save[0],'..',2)
    # os.chdir(save)
    # name = 'max_reward'
    # completeName = os.path.join(name+".txt")
    # file1 = open(completeName,"w")
    # toFile = str(np.mean(rewbuffer))
    # file1.write(toFile)
    # file1.close()
    # os.chdir('../../../baselines-tf2')

    return pi
Пример #15
0
def learn(env, policy_fn, *,
          timesteps_per_batch,  # what to train on
          epsilon, beta, cg_iters,
          gamma, lam,  # advantage estimation
          trial, sess,
          method,
          entcoeff=0.0,
          cg_damping=1e-2,
          kl_target=0.01,
          crosskl_coeff=0.01,
          vf_stepsize=3e-4,
          vf_iters =3,
          max_timesteps=0, max_episodes=0, max_iters=0,  # time constraint
          callback=None,
          TRPO=False
          ):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    total_space = env.total_space
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space, ac_space, ob_name="ob")
    oldpi = policy_fn("oldpi", ob_space, ac_space, ob_name="ob")

    gpi = policy_fn("gpi", total_space, ac_space, ob_name="gob")
    goldpi = policy_fn("goldpi", total_space, ac_space, ob_name="gob")

    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    gatarg = tf.placeholder(dtype=tf.float32, shape=[None])
    gret = tf.placeholder(dtype=tf.float32, shape=[None])

    ob = U.get_placeholder_cached(name="ob")
    gob = U.get_placeholder_cached(name='gob')
    ac = pi.pdtype.sample_placeholder([None])
    crosskl_c = tf.placeholder(dtype=tf.float32, shape=[])
    # crosskl_c = 0.01


    kloldnew = oldpi.pd.kl(pi.pd)
    gkloldnew = goldpi.pd.kl(gpi.pd)

    #TODO: check if it can work in this way
    # crosskl_ob = pi.pd.kl(goldpi.pd)
    # crosskl_gob = gpi.pd.kl(oldpi.pd)
    crosskl_gob = pi.pd.kl(gpi.pd)
    crosskl_ob = gpi.pd.kl(pi.pd)
    # crosskl


    pdmean = pi.pd.mean
    pdstd = pi.pd.std
    gpdmean = gpi.pd.mean
    gpdstd = gpi.pd.std

    ent = pi.pd.entropy()
    gent = gpi.pd.entropy()

    old_entropy = oldpi.pd.entropy()
    gold_entropy = goldpi.pd.entropy()

    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    meancrosskl = tf.reduce_mean(crosskl_ob)

    # meancrosskl = tf.maximum(tf.reduce_mean(crosskl_ob - 100), 0)

    gmeankl = tf.reduce_mean(gkloldnew)
    gmeanent = tf.reduce_mean(gent)
    gmeancrosskl = tf.reduce_mean(crosskl_gob)

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))
    gvferr = tf.reduce_mean(tf.square(gpi.vpred - gret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    gratio = tf.exp(gpi.pd.logp(ac) - goldpi.pd.logp(ac))

    # Ratio objective
    # surrgain = tf.reduce_mean(ratio * atarg)
    # gsurrgain = tf.reduce_mean(gratio * gatarg)

    # Log objective
    surrgain = tf.reduce_mean(pi.pd.logp(ac) * atarg)
    gsurrgain = tf.reduce_mean(gpi.pd.logp(ac) * gatarg)

    # optimgain = surrgain + crosskl_c * meancrosskl
    optimgain = surrgain
    losses = [optimgain, meankl, meancrosskl, surrgain, meanent, tf.reduce_mean(ratio)]
    loss_names = ["optimgain", "meankl", "meancrosskl", "surrgain", "entropy", "ratio"]

    # goptimgain = gsurrgain + crosskl_c * gmeancrosskl
    goptimgain = gsurrgain

    glosses = [goptimgain, gmeankl, gmeancrosskl, gsurrgain, gmeanent, tf.reduce_mean(gratio)]
    gloss_names = ["goptimgain", "gmeankl","gmeancrosskl", "gsurrgain", "gentropy", "gratio"]

    dist = meankl
    gdist = gmeankl

    all_pi_var_list = pi.get_trainable_variables()
    all_var_list = [v for v in all_pi_var_list if v.name.split("/")[0].startswith("pi")]
    var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    vfadam = MpiAdam(vf_var_list)
    poladam = MpiAdam(var_list)


    gall_gpi_var_list = gpi.get_trainable_variables()
    gall_var_list = [v for v in gall_gpi_var_list if v.name.split("/")[0].startswith("gpi")]
    gvar_list = [v for v in gall_var_list if v.name.split("/")[1].startswith("pol")]
    gvf_var_list = [v for v in gall_var_list if v.name.split("/")[1].startswith("vf")]
    gvfadam = MpiAdam(gvf_var_list)
    # gpoladpam = MpiAdam(gvar_list)


    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    # crossklgrads = tf.gradients(meancrosskl, var_list)

    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)


    gget_flat = U.GetFlat(gvar_list)
    gset_from_flat = U.SetFromFlat(gvar_list)
    gklgrads = tf.gradients(gdist, gvar_list)
    # gcrossklgrads = tf.gradients(gmeancrosskl, gvar_list)

    gflat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="gflat_tan")
    gshapes = [var.get_shape().as_list() for var in gvar_list]
    gstart = 0
    gtangents = []
    for shape in gshapes:
        sz = U.intprod(shape)
        gtangents.append(tf.reshape(gflat_tangent[gstart:gstart+sz], shape))
        gstart += sz
    ggvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(gklgrads, gtangents)]) #pylint: disable=E1111
    gfvp = U.flatgrad(ggvp, gvar_list)


    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])

    gassign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(goldpi.get_variables(), gpi.get_variables())])

    compute_losses = U.function([crosskl_c, gob, ob, ac, atarg], losses)
    compute_lossandgrad = U.function([crosskl_c, gob, ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))
    compute_crossklandgrad = U.function([ob, gob],U.flatgrad(meancrosskl, var_list))

    gcompute_losses = U.function([crosskl_c, ob, gob, ac, gatarg], glosses)
    gcompute_lossandgrad = U.function([crosskl_c, ob, gob, ac, gatarg], glosses + [U.flatgrad(goptimgain, gvar_list)])
    gcompute_fvp = U.function([gflat_tangent, gob, ac, gatarg], gfvp)
    gcompute_vflossandgrad = U.function([gob, gret], U.flatgrad(gvferr, gvf_var_list))
    # compute_gcrossklandgrad = U.function([gob, ob], U.flatgrad(gmeancrosskl, gvar_list))

    saver = tf.train.Saver()

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()

    guided_initilizer(gpol=gvar_list, gvf=gvf_var_list, fpol=var_list, fvf=vf_var_list)

    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    poladam.sync()
    print("Init final policy param sum", th_init.sum(), flush=True)

    gth_init = gget_flat()
    MPI.COMM_WORLD.Bcast(gth_init, root=0)
    gset_from_flat(gth_init)
    gvfadam.sync()
    # gpoladpam.sync()
    print("Init guided policy param sum", gth_init.sum(), flush=True)

    # Initialize eta, omega optimizer
    init_eta = 0.5
    init_omega = 2.0
    eta_omega_optimizer = EtaOmegaOptimizer(beta, epsilon, init_eta, init_omega)



    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, gpi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    num_iters = max_timesteps // timesteps_per_batch
    lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

    assert sum([max_iters>0, max_timesteps>0, max_episodes>0])==1

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************"%iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        gob, gatarg, gtdlamret = seg["gob"], seg["gadv"], seg["gtdlamret"]


        vpredbefore = seg["vpred"] # predicted value function before udpate
        gvpredbefore = seg["gvpred"]

        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate
        gatarg = (gatarg - gatarg.mean()) / gatarg.std()

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

        if hasattr(gpi, "ret_rms"): gpi.ret_rms.update(gtdlamret)
        if hasattr(gpi, "ob_rms"): gpi.ob_rms.update(gob)

        args = crosskl_coeff, seg["gob"], seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args[2:]]

        gargs = crosskl_coeff, seg["ob"], seg["gob"], seg["ac"], gatarg
        gfvpargs = [arr[::5] for arr in gargs[2:]]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        def gfisher_vector_product(p):
            return allmean(gcompute_fvp(p, *gfvpargs)) + cg_damping * p

        assign_old_eq_new() # set old parameter values to new parameter values
        gassign_old_eq_new()

        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
            *glossbefore, gg = gcompute_lossandgrad(*gargs)

        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)

        glossbefore = allmean(np.array(glossbefore))
        gg = allmean(gg)

        if np.allclose(g, 0) or np.allclose(gg, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0)
                gstepdir = cg(gfisher_vector_product, gg, cg_iters=cg_iters, verbose=rank==0)
            assert np.isfinite(gstepdir).all()
            assert np.isfinite(stepdir).all()


            if TRPO:
                #
                # TRPO specific code.
                # Find correct step size using line search
                #
                #TODO: also enable guided learning for TRPO
                shs = .5*stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / epsilon)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > epsilon * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
            else:
                #
                # COPOS specific implementation.
                #

                copos_update_dir = stepdir
                gcopos_update_dir = gstepdir

                # Split direction into log-linear 'w_theta' and non-linear 'w_beta' parts
                w_theta, w_beta = pi.split_w(copos_update_dir)
                gw_theta, gw_beta = gpi.split_w(gcopos_update_dir)

                # q_beta(s,a) = \grad_beta \log \pi(a|s) * w_beta
                #             = features_beta(s) * K^T * Prec * a
                # q_beta = self.target.get_q_beta(features_beta, actions)

                Waa, Wsa = pi.w2W(w_theta)
                wa = pi.get_wa(ob, w_beta)

                gWaa, gWsa = gpi.w2W(gw_theta)
                gwa = gpi.get_wa(gob, gw_beta)

                varphis = pi.get_varphis(ob)
                gvarphis = gpi.get_varphis(gob)

                # Optimize eta and omega
                tmp_ob = np.zeros((1,) + ob_space.shape) # We assume that entropy does not depend on the NN
                old_ent = old_entropy.eval({oldpi.ob: tmp_ob})[0]
                eta, omega = eta_omega_optimizer.optimize(w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                                                          pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent)
                logger.log("Initial eta of final policy: " + str(eta) + " and omega: " + str(omega))

                gtmp_ob = np.zeros((1,) + total_space.shape)
                gold_ent = gold_entropy.eval({goldpi.ob: gtmp_ob})[0]
                geta, gomega = eta_omega_optimizer.optimize(gw_theta, gWaa, gWsa, gwa, gvarphis, gpi.get_kt(),
                                                            gpi.get_prec_matrix(), gpi.is_new_policy_valid, gold_ent)
                logger.log("Initial eta of guided policy: " + str(geta) + " and omega: " + str(gomega))

                current_theta_beta = get_flat()
                prev_theta, prev_beta = pi.all_to_theta_beta(current_theta_beta)

                gcurrent_theta_beta = gget_flat()
                gprev_theta, gprev_beta = gpi.all_to_theta_beta(gcurrent_theta_beta)

                for i in range(2):
                    # Do a line search for both theta and beta parameters by adjusting only eta
                    eta = eta_search(w_theta, w_beta, eta, omega, allmean, compute_losses, get_flat, set_from_flat, pi,
                                     epsilon, args)
                    logger.log("Updated eta of final policy, eta: " + str(eta) + " and omega: " + str(omega))

                    # Find proper omega for new eta. Use old policy parameters first.
                    set_from_flat(pi.theta_beta_to_all(prev_theta, prev_beta))
                    eta, omega = \
                        eta_omega_optimizer.optimize(w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                                                     pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent, eta)
                    logger.log("Updated omega of final policy, eta: " + str(eta) + " and omega: " + str(omega))

                    geta = eta_search(gw_theta, gw_beta, geta, gomega, allmean, gcompute_losses, gget_flat,
                                      gset_from_flat, gpi, epsilon, gargs)
                    logger.log("updated eta of guided policy, eta:" + str(geta) + "and omega:" + str(gomega))

                    gset_from_flat(gpi.theta_beta_to_all(gprev_theta, gprev_beta))
                    geta, gomega = eta_omega_optimizer.optimize(gw_theta, gWaa, gWsa, gwa, gvarphis,
                                    gpi.get_kt(), gpi.get_prec_matrix(), gpi.is_new_policy_valid, gold_ent, geta)
                    logger.log("Updated omega of guided policy, eta:" + str(geta) + "and omega:" + str(gomega))

                # Use final policy
                logger.log("Final eta of final policy: " + str(eta) + " and omega: " + str(omega))
                logger.log("Final eta of guided policy: " + str(geta) + "and omega:" + str(gomega))

                cur_theta = (eta * prev_theta + w_theta.reshape(-1, )) / (eta + omega)
                cur_beta = prev_beta + w_beta.reshape(-1, ) / eta
                set_from_flat(pi.theta_beta_to_all(cur_theta, cur_beta))

                gcur_theta = (geta * gprev_theta + gw_theta.reshape(-1, )) / (geta + gomega)
                gcur_beta = gprev_beta + gw_beta.reshape(-1, ) / geta
                gset_from_flat(gpi.theta_beta_to_all(gcur_theta, gcur_beta))

                meanlosses = surr, kl, crosskl, *_ = allmean(np.array(compute_losses(*args)))
                gmeanlosses = gsurr, gkl, gcrosskl, *_ = allmean(np.array(gcompute_losses(*gargs)))

                # poladam.update(allmean(compute_crossklandgrad(ob, gob)), vf_stepsize)
                # gpoladpam.update(allmean(compute_gcrossklandgrad(gob, ob)), vf_stepsize)

                for _ in range(vf_iters):
                    for (mbob, mbgob) in dataset.iterbatches((seg["ob"], seg["gob"]),
                        include_final_partial_batch=False, batch_size=64):
                        g = allmean(compute_crossklandgrad(mbob, mbgob))
                        poladam.update(g, vf_stepsize)


        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        for (lossname, lossval) in zip(gloss_names, gmeanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)
                for (mbob, mbret) in dataset.iterbatches((seg["gob"], seg["gtdlamret"]),
                include_final_partial_batch=False, batch_size=64):
                    gg = allmean(gcompute_vflossandgrad(mbob, mbret))
                    gvfadam.update(gg, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
        logger.record_tabular("gev_tdlam_before", explained_variance(gvpredbefore, gtdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        logger.record_tabular("CrossKLCoeff :", crosskl_coeff)
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        logger.record_tabular("Name", method)
        logger.record_tabular("Iteration", iters_so_far)
        logger.record_tabular("trial", trial)

        if rank==0:
            logger.dump_tabular()

        if iters_so_far % 100 == 0 or iters_so_far == 1 or iters_so_far == num_iters:
            # sess = tf.get_default_session()
            checkdir = get_dir(osp.join(logger.get_dir(), 'checkpoints'))
            savepath = osp.join(checkdir, '%.5i.ckpt'%iters_so_far)
            saver.save(sess, save_path=savepath)
            print("save model to path:", savepath)
Пример #16
0
def learn(*,
        network,
        env,
        total_timesteps,
        timesteps_per_batch=1024, # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0, # advantage estimation
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters =3,
        max_episodes=0, max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        **network_kwargs
        ):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0

    cpus_per_worker = 1
    U.get_session(config=tf.ConfigProto(
            allow_soft_placement=True,
            inter_op_parallelism_threads=cpus_per_worker,
            intra_op_parallelism_threads=cpus_per_worker
    ))


    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(get_variables("oldpi"), get_variables("pi"))])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

    if sum([max_iters>0, total_timesteps>0, max_episodes>0])==0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************"%iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"] # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]
        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new() # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0)
            assert np.isfinite(stepdir).all()
            shs = .5*stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
                assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank==0:
            logger.dump_tabular()

    return pi
Пример #17
0
 def evaluate_natural_gradient(g):
     return cg(evaluate_fisher_vector_prod,
               g,
               cg_iters=10,
               verbose=0)
Пример #18
0
def learn(env, last_ob, last_jpos, run_reach, policy_func, reward_giver, expert_dataset, rank,
          pretrained, pretrained_weight, *,
          g_step, d_step, entcoeff, save_per_iter,
          ckpt_dir, log_dir, timesteps_per_batch, task_name,
          gamma, lam,
          max_kl, cg_iters, cg_damping=1e-2,
          vf_stepsize=3e-4, d_stepsize=3e-4, vf_iters=3,
          max_timesteps=0, max_episodes=0, max_iters=0,
          callback=None
          ):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    

    pi = policy_func("pi_grasp", ob_space, ac_space, reuse=(pretrained_weight != None))
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    ret = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])


    # Changes are made in order to use tensorboard
    # -------------------------------------------
    #train_writer = tf.compat.v1.summary.FileWriter('../../logs/trpo_mpi') # sets log dir to GailPart folder

    #sess = tf.compat.v1.Session() # create a session??

    # -------------------------------------------

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [v for v in all_var_list if v.name.startswith("pi_grasp/pol") or v.name.startswith("pi_grasp/logstd")]
    vf_var_list = [v for v in all_var_list if v.name.startswith("pi_grasp/vff")]
    assert len(var_list) == len(vf_var_list) + 1
    d_adam = MpiAdam(reward_giver.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([], [], updates=[tf.compat.v1.assign(oldv, newv)
                                                    for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds" % (time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    
        
    if rank == 0:
        print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, last_ob, last_jpos, run_reach, policy_func, env, reward_giver, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(reward_giver.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        U.load_state(pretrained_weight, var_list=pi.get_variables())

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            t_name = task_name + "_" + str(iters_so_far)
            fname = os.path.join(ckpt_dir, t_name) # changed from task_name
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.compat.v1.train.Saver()
            saver.save(tf.compat.v1.get_default_session(), fname)

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p
        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
                #print("trpo_mpi, seg = seg_gen.__next__() call output: ", seg )
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
            vpredbefore = seg["vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std()  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new()  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5*stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))

                    #logger.log("trpo_mpi.py, what should be logged with loss names ie. meanlosses:_", meanlosses)

                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                    assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                                                             include_final_partial_batch=False, batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        g_losses = meanlosses

        #logger.log("trpo_mpi.py, mean losses before logging wiht loss names: \n")
        #logger.log(meanlosses)


        # This is where the nan values are tabulated for some of the entries
        #logger.log("trpo_mpi.py, view whats being printed with (loss_names, lossvalues)")
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, reward_giver.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = []  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches((ob, ac),
                                                      include_final_partial_batch=False,
                                                      batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for reward_giver
            if hasattr(reward_giver, "obs_rms"): reward_giver.obs_rms.update(np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = reward_giver.lossandgrad(ob_batch, ac_batch, ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        
        # This is to see what the d_losses are
        #logger.log("trpo_mpi.py, see what is being logged in d_losses")
        #logger.log("trpo_mpi.py, d_losses")
        #logger.log(d_losses)
        
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        # For Tensorboard Logging
        # ---------------------------
        #tf.compat.v1.summary.scalar("Generator Accuracy", tf.convert_to_tensor( np.mean(d_losses, axis=0)[4] )  ) # 5 position
        #tf.compat.v1.summary.scalar("Expert Accuracy", tf.convert_to_tensor( np.mean(d_losses, axis=0)[5] ) ) # 6 position
        #tf.compat.v1.summary.scalar("Entropy Loss", tf.convert_to_tensor( np.mean(d_losses, axis=0)[3] )  ) # 4 position

        #merge = tf.compat.v1.summary.merge_all() # merge summaries
        #summary = sess.run([merge])

        #train_writer.add_summary(summary, iters_so_far)

        # Is there a need to reset metric after every epoch? I dont think so?
        



        # ---------------------------

        
        #logger.log("trpo_mpi.py, after logging, but before recordeing timesteps so far")

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"])  # local values, truly confirmed is empty after call
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        # Could it be that the seg locals for lens and rets are ommitted since has no use in gail algorithm?

        # Probably dont have to worry about it, check the scalar part
        logger.record_tabular("EpLenMean", np.mean(lenbuffer)) # This has nan values
        logger.record_tabular("EpRewMean", np.mean(rewbuffer)) # This has nan values
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer)) # This has nan values
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        #timesteps_so_far += sum(lens)

        timesteps_so_far += seg["steps"] # changed to match setup with no finishing condition
        iters_so_far += 1


        #env.reset() #reset the environment after a new iteration, therefore in traj generator check ob

        logger.record_tabular("EpisodesSoFar", episodes_so_far) # This is 0 ? if lens which is the number of entries for episode length doesnt exist, doesnt make sense for it to have a return.
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        # I think the entloss, entrpoy, ev_.... and the useful ones arent from the environment called using the trpo

        if rank == 0:
            logger.dump_tabular()
def learn(env, policy_func, *,
        timesteps_per_batch, # what to train on
        max_kl, cg_iters,
        gamma, lam, # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters =3,
        max_timesteps=0, max_episodes=0, max_iters=0,  # time constraint
        callback=None
        ):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)    
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space)
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    entbonus = entcoeff * meanent

    vferr = U.mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    surrgain = U.mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([U.sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
        else:
            yield
    
    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

    assert sum([max_iters>0, max_timesteps>0, max_episodes>0])==1

    while True:        
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************"%iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"] # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]
        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new() # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0)
            assert np.isfinite(stepdir).all()
            shs = .5*stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
                assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]), 
                include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank==0:
            logger.dump_tabular()
Пример #20
0
def learn(
    env,
    policy_func,
    reward_giver,
    semi_dataset,
    rank,
    pretrained_weight,
    *,
    g_step,
    d_step,
    entcoeff,
    save_per_iter,
    ckpt_dir,
    log_dir,
    timesteps_per_batch,
    task_name,
    gamma,
    lam,
    max_kl,
    cg_iters,
    cg_damping=1e-2,
    vf_stepsize=3e-4,
    d_stepsize=3e-4,
    vf_iters=3,
    max_timesteps=0,
    max_episodes=0,
    max_iters=0,
    vf_batchsize=128,
    callback=None,
    freeze_g=False,
    freeze_d=False,
    pretrained_il=None,
    pretrained_semi=None,
    semi_loss=False,
    expert_reward_threshold=None,  # filter experts based on reward
    expert_label=get_semi_prefix(),
    sparse_reward=False  # filter experts based on success flag (sparse reward)
):

    semi_loss = semi_loss and semi_dataset is not None
    l2_w = 0.1

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)

    if rank == 0:
        writer = U.file_writer(log_dir)

        # print all the hyperparameters in the log...
        log_dict = {
            # "expert trajectories": expert_dataset.num_traj,
            "expert model": pretrained_semi,
            "algo": "trpo",
            "threads": nworkers,
            "timesteps_per_batch": timesteps_per_batch,
            "timesteps_per_thread": -(-timesteps_per_batch // nworkers),
            "entcoeff": entcoeff,
            "vf_iters": vf_iters,
            "vf_batchsize": vf_batchsize,
            "vf_stepsize": vf_stepsize,
            "d_stepsize": d_stepsize,
            "g_step": g_step,
            "d_step": d_step,
            "max_kl": max_kl,
            "gamma": gamma,
            "lam": lam,
        }

        if semi_dataset is not None:
            log_dict["semi trajectories"] = semi_dataset.num_traj
        if hasattr(semi_dataset, 'info'):
            log_dict["semi_dataset_info"] = semi_dataset.info
        if expert_reward_threshold is not None:
            log_dict["expert reward threshold"] = expert_reward_threshold
        log_dict["sparse reward"] = sparse_reward

        # print them all together for csv
        logger.log(",".join([str(elem) for elem in log_dict]))
        logger.log(",".join([str(elem) for elem in log_dict.values()]))

        # also print them separately for easy reading:
        for elem in log_dict:
            logger.log(str(elem) + ": " + str(log_dict[elem]))

    # divide the timesteps to the threads
    timesteps_per_batch = -(-timesteps_per_batch // nworkers
                            )  # get ceil of division

    # Setup losses and stuff
    # ----------------------------------------
    ob_space = OrderedDict([(label, env[label].observation_space)
                            for label in env])

    if semi_dataset and get_semi_prefix() in env:  # semi ob space is different
        semi_obs_space = semi_ob_space(env[get_semi_prefix()],
                                       semi_size=semi_dataset.semi_size)
        ob_space[get_semi_prefix()] = semi_obs_space
    else:
        print("no semi dataset")
        # raise RuntimeError

    vf_stepsize = {label: vf_stepsize for label in env}

    ac_space = {label: env[label].action_space for label in ob_space}
    pi = {
        label: policy_func("pi",
                           ob_space=ob_space[label],
                           ac_space=ac_space[label],
                           prefix=label)
        for label in ob_space
    }
    oldpi = {
        label: policy_func("oldpi",
                           ob_space=ob_space[label],
                           ac_space=ac_space[label],
                           prefix=label)
        for label in ob_space
    }
    atarg = {
        label: tf.placeholder(dtype=tf.float32, shape=[None])
        for label in ob_space
    }  # Target advantage function (if applicable)
    ret = {
        label: tf.placeholder(dtype=tf.float32, shape=[None])
        for label in ob_space
    }  # Empirical return

    ob = {
        label: U.get_placeholder_cached(name=label + "ob")
        for label in ob_space
    }
    ac = {
        label: pi[label].pdtype.sample_placeholder([None])
        for label in ob_space
    }

    kloldnew = {label: oldpi[label].pd.kl(pi[label].pd) for label in ob_space}
    ent = {label: pi[label].pd.entropy() for label in ob_space}
    meankl = {label: tf.reduce_mean(kloldnew[label]) for label in ob_space}
    meanent = {label: tf.reduce_mean(ent[label]) for label in ob_space}
    entbonus = {label: entcoeff * meanent[label] for label in ob_space}

    vferr = {
        label: tf.reduce_mean(tf.square(pi[label].vpred - ret[label]))
        for label in ob_space
    }

    ratio = {
        label:
        tf.exp(pi[label].pd.logp(ac[label]) - oldpi[label].pd.logp(ac[label]))
        for label in ob_space
    }  # advantage * pnew / pold
    surrgain = {
        label: tf.reduce_mean(ratio[label] * atarg[label])
        for label in ob_space
    }

    optimgain = {
        label: surrgain[label] + entbonus[label]
        for label in ob_space
    }
    losses = {
        label: [
            optimgain[label], meankl[label], entbonus[label], surrgain[label],
            meanent[label]
        ]
        for label in ob_space
    }
    loss_names = {
        label: [
            label + name for name in
            ["optimgain", "meankl", "entloss", "surrgain", "entropy"]
        ]
        for label in ob_space
    }

    vf_losses = {label: [vferr[label]] for label in ob_space}
    vf_loss_names = {label: [label + "vf_loss"] for label in ob_space}

    dist = {label: meankl[label] for label in ob_space}

    all_var_list = {
        label: pi[label].get_trainable_variables()
        for label in ob_space
    }
    var_list = {
        label: [
            v for v in all_var_list[label]
            if "pol" in v.name or "logstd" in v.name
        ]
        for label in ob_space
    }
    vf_var_list = {
        label: [v for v in all_var_list[label] if "vf" in v.name]
        for label in ob_space
    }
    for label in ob_space:
        assert len(var_list[label]) == len(vf_var_list[label]) + 1

    get_flat = {label: U.GetFlat(var_list[label]) for label in ob_space}
    set_from_flat = {
        label: U.SetFromFlat(var_list[label])
        for label in ob_space
    }
    klgrads = {
        label: tf.gradients(dist[label], var_list[label])
        for label in ob_space
    }
    flat_tangent = {
        label: tf.placeholder(dtype=tf.float32,
                              shape=[None],
                              name=label + "flat_tan")
        for label in ob_space
    }
    fvp = {}
    for label in ob_space:
        shapes = [var.get_shape().as_list() for var in var_list[label]]
        start = 0
        tangents = []
        for shape in shapes:
            sz = U.intprod(shape)
            tangents.append(
                tf.reshape(flat_tangent[label][start:start + sz], shape))
            start += sz
        gvp = tf.add_n([
            tf.reduce_sum(g * tangent)
            for (g, tangent) in zipsame(klgrads[label], tangents)
        ])  # pylint: disable=E1111
        fvp[label] = U.flatgrad(gvp, var_list[label])

    assign_old_eq_new = {
        label:
        U.function([], [],
                   updates=[
                       tf.assign(oldv, newv)
                       for (oldv,
                            newv) in zipsame(oldpi[label].get_variables(),
                                             pi[label].get_variables())
                   ])
        for label in ob_space
    }
    compute_losses = {
        label: U.function([ob[label], ac[label], atarg[label]], losses[label])
        for label in ob_space
    }

    compute_vf_losses = {
        label: U.function([ob[label], ac[label], atarg[label], ret[label]],
                          losses[label] + vf_losses[label])
        for label in ob_space
    }

    compute_lossandgrad = {
        label: U.function([ob[label], ac[label], atarg[label]], losses[label] +
                          [U.flatgrad(optimgain[label], var_list[label])])
        for label in ob_space
    }
    compute_fvp = {
        label:
        U.function([flat_tangent[label], ob[label], ac[label], atarg[label]],
                   fvp[label])
        for label in ob_space
    }

    compute_vflossandgrad = {
        label: U.function([ob[label], ret[label]], vf_losses[label] +
                          [U.flatgrad(vferr[label], vf_var_list[label])])
        for label in ob_space
    }

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    episodes_so_far = {label: 0 for label in ob_space}
    timesteps_so_far = {label: 0 for label in ob_space}
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = {label: deque(maxlen=40)
                 for label in ob_space}  # rolling buffer for episode lengths
    rewbuffer = {label: deque(maxlen=40)
                 for label in ob_space}  # rolling buffer for episode rewards
    true_rewbuffer = {label: deque(maxlen=40) for label in ob_space}
    success_buffer = {label: deque(maxlen=40) for label in ob_space}
    # L2 only for semi network
    l2_rewbuffer = deque(
        maxlen=40) if semi_loss and semi_dataset is not None else None
    total_rewbuffer = deque(
        maxlen=40) if semi_loss and semi_dataset is not None else None

    not_update = 1 if not freeze_d else 0  # do not update G before D the first time
    loaded = False
    # if provide pretrained weight
    if not U.load_checkpoint_variables(pretrained_weight,
                                       include_no_prefix_vars=True):
        # if no general checkpoint available, check sub-checkpoints for both networks
        if U.load_checkpoint_variables(pretrained_il,
                                       prefix=get_il_prefix(),
                                       include_no_prefix_vars=False):
            if rank == 0:
                logger.log("loaded checkpoint variables from " + pretrained_il)
            loaded = True
        elif expert_label == get_il_prefix():
            logger.log("ERROR no available cat_dauggi expert model in ",
                       pretrained_il)
            exit(1)

        if U.load_checkpoint_variables(pretrained_semi,
                                       prefix=get_semi_prefix(),
                                       include_no_prefix_vars=False):
            if rank == 0:
                logger.log("loaded checkpoint variables from " +
                           pretrained_semi)
            loaded = True
        elif expert_label == get_semi_prefix():
            if rank == 0:
                logger.log("ERROR no available semi expert model in ",
                           pretrained_semi)
            exit(1)
    else:
        loaded = True
        if rank == 0:
            logger.log("loaded checkpoint variables from " + pretrained_weight)

    if loaded:
        not_update = 0 if any(
            [x.op.name.find("adversary") != -1
             for x in U.ALREADY_INITIALIZED]) else 1
        if pretrained_weight and pretrained_weight.rfind("iter_") and \
                pretrained_weight[pretrained_weight.rfind("iter_") + len("iter_"):].isdigit():
            curr_iter = int(
                pretrained_weight[pretrained_weight.rfind("iter_") +
                                  len("iter_"):]) + 1

            if rank == 0:
                print("loaded checkpoint at iteration: " + str(curr_iter))
            iters_so_far = curr_iter
            for label in timesteps_so_far:
                timesteps_so_far[label] = iters_so_far * timesteps_per_batch

    d_adam = MpiAdam(reward_giver.get_trainable_variables())
    vfadam = {label: MpiAdam(vf_var_list[label]) for label in ob_space}

    U.initialize()
    d_adam.sync()

    for label in ob_space:
        th_init = get_flat[label]()
        MPI.COMM_WORLD.Bcast(th_init, root=0)
        set_from_flat[label](th_init)
        vfadam[label].sync()
        if rank == 0:
            print(label + "Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = {
        label: traj_segment_generator(
            pi[label],
            env[label],
            reward_giver,
            timesteps_per_batch,
            stochastic=True,
            semi_dataset=semi_dataset if label == get_semi_prefix() else None,
            semi_loss=semi_loss,
            reward_threshold=expert_reward_threshold
            if label == expert_label else None,
            sparse_reward=sparse_reward if label == expert_label else False)
        for label in ob_space
    }

    g_losses = {}

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = {
        label: stats(loss_names[label] + vf_loss_names[label])
        for label in ob_space if label != expert_label
    }
    d_loss_stats = stats(reward_giver.loss_name)
    ep_names = ["True_rewards", "Rewards", "Episode_length", "Success"]

    ep_stats = {label: None for label in ob_space}
    # cat_dauggi network stats
    if get_il_prefix() in ep_stats:
        ep_stats[get_il_prefix()] = stats([name for name in ep_names])

    # semi network stats
    if get_semi_prefix() in ep_stats:
        if semi_loss and semi_dataset is not None:
            ep_names.append("L2_loss")
            ep_names.append("total_rewards")
        ep_stats[get_semi_prefix()] = stats(
            [get_semi_prefix() + name for name in ep_names])

    if rank == 0:
        start_time = time.time()
        ch_count = 0
        env_type = env[expert_label].env.env.__class__.__name__

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and any(
            [timesteps_so_far[label] >= max_timesteps for label in ob_space]):
            break
        elif max_episodes and any(
            [episodes_so_far[label] >= max_episodes for label in ob_space]):
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            fname = os.path.join(ckpt_dir, task_name)
            if env_type.find("Pendulum") != -1 or save_per_iter != 1:
                fname = os.path.join(ckpt_dir, 'iter_' + str(iters_so_far),
                                     'iter_' + str(iters_so_far))
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname, write_meta_graph=False)

        if rank == 0 and time.time(
        ) - start_time >= 3600 * ch_count:  # save a different checkpoint every hour
            fname = os.path.join(ckpt_dir, 'hour' + str(ch_count).zfill(3))
            fname = os.path.join(fname, 'iter_' + str(iters_so_far))
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname, write_meta_graph=False)
            ch_count += 1

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_func_builder(label):
            def fisher_vector_product(p):
                return allmean(compute_fvp[label](p, *
                                                  fvpargs)) + cg_damping * p

            return fisher_vector_product

        # ------------------ Update G ------------------
        d = {label: None for label in ob_space}
        segs = {label: None for label in ob_space}
        logger.log("Optimizing Policy...")
        for curr_step in range(g_step):
            for label in ob_space:

                if curr_step and label == expert_label:  # get expert trajectories only for one g_step which is same as d_step
                    continue

                logger.log("Optimizing Policy " + label + "...")
                with timed("sampling"):
                    segs[label] = seg = seg_gen[label].__next__()

                seg["rew"] = seg["rew"] - seg["l2_loss"] * l2_w

                add_vtarg_and_adv(seg, gamma, lam)
                ob, ac, atarg, tdlamret, full_ob = seg["ob"], seg["ac"], seg[
                    "adv"], seg["tdlamret"], seg["full_ob"]
                vpredbefore = seg[
                    "vpred"]  # predicted value function before udpate
                atarg = (atarg - atarg.mean()) / atarg.std(
                )  # standardized advantage function estimate
                d[label] = Dataset(dict(ob=ob,
                                        ac=ac,
                                        atarg=atarg,
                                        vtarg=tdlamret),
                                   shuffle=True)

                if not_update or label == expert_label:
                    continue  # stop G from updating

                if hasattr(pi[label], "ob_rms"):
                    pi[label].ob_rms.update(
                        full_ob)  # update running mean/std for policy

                args = seg["full_ob"], seg["ac"], atarg
                fvpargs = [arr[::5] for arr in args]

                assign_old_eq_new[label](
                )  # set old parameter values to new parameter values
                with timed("computegrad"):
                    *lossbefore, g = compute_lossandgrad[label](*args)
                lossbefore = allmean(np.array(lossbefore))
                g = allmean(g)
                if np.allclose(g, 0):
                    logger.log("Got zero gradient. not updating")
                else:
                    with timed("cg"):
                        stepdir = cg(fisher_func_builder(label),
                                     g,
                                     cg_iters=cg_iters,
                                     verbose=rank == 0)
                    assert np.isfinite(stepdir).all()
                    shs = .5 * stepdir.dot(fisher_func_builder(label)(stepdir))
                    lm = np.sqrt(shs / max_kl)
                    # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                    fullstep = stepdir / lm
                    expectedimprove = g.dot(fullstep)
                    surrbefore = lossbefore[0]
                    stepsize = 1.0
                    thbefore = get_flat[label]()
                    for _ in range(10):
                        thnew = thbefore + fullstep * stepsize
                        set_from_flat[label](thnew)
                        meanlosses = surr, kl, *_ = allmean(
                            np.array(compute_losses[label](*args)))
                        if rank == 0:
                            print("Generator entropy " + str(meanlosses[4]) +
                                  ", loss " + str(meanlosses[2]))
                        improve = surr - surrbefore
                        logger.log("Expected: %.3f Actual: %.3f" %
                                   (expectedimprove, improve))
                        if not np.isfinite(meanlosses).all():
                            logger.log(
                                "Got non-finite value of losses -- bad!")
                        elif kl > max_kl * 1.5:
                            logger.log(
                                "violated KL constraint. shrinking step.")
                        elif improve < 0:
                            logger.log(
                                "surrogate didn't improve. shrinking step.")
                        else:
                            logger.log("Stepsize OK!")
                            break
                        stepsize *= .5
                    else:
                        logger.log("couldn't compute a good step")
                        set_from_flat[label](thbefore)
                    if nworkers > 1 and iters_so_far % 20 == 0:
                        paramsums = MPI.COMM_WORLD.allgather(
                            (thnew.sum(),
                             vfadam[label].getflat().sum()))  # list of tuples
                        assert all(
                            np.allclose(ps, paramsums[0])
                            for ps in paramsums[1:])

            expert_dataset = d[expert_label]

            if not_update:
                break

            for label in ob_space:
                if label == expert_label:
                    continue

                with timed("vf"):
                    logger.log(fmt_row(13, vf_loss_names[label]))
                    for _ in range(vf_iters):
                        vf_b_losses = []
                        for batch in d[label].iterate_once(vf_batchsize):
                            mbob = batch["ob"]
                            mbret = batch["vtarg"]
                            *newlosses, g = compute_vflossandgrad[label](mbob,
                                                                         mbret)
                            g = allmean(g)
                            newlosses = allmean(np.array(newlosses))

                            vfadam[label].update(g, vf_stepsize[label])
                            vf_b_losses.append(newlosses)
                        logger.log(fmt_row(13, np.mean(vf_b_losses, axis=0)))

                    logger.log("Evaluating losses...")
                    losses = []
                    for batch in d[label].iterate_once(vf_batchsize):
                        newlosses = compute_vf_losses[label](batch["ob"],
                                                             batch["ac"],
                                                             batch["atarg"],
                                                             batch["vtarg"])
                        losses.append(newlosses)
                    g_losses[label], _, _ = mpi_moments(losses, axis=0)

                #########################
                for ob_batch, ac_batch, full_ob_batch in dataset.iterbatches(
                    (segs[label]["ob"], segs[label]["ac"],
                     segs[label]["full_ob"]),
                        include_final_partial_batch=False,
                        batch_size=len(ob)):
                    expert_batch = expert_dataset.next_batch(len(ob))

                    ob_expert, ac_expert = expert_batch["ob"], expert_batch[
                        "ac"]

                    exp_rew = 0
                    exp_rews = None
                    for obs, acs in zip(ob_expert, ac_expert):
                        curr_rew = reward_giver.get_reward(obs, acs)[0][0] \
                                   if not hasattr(reward_giver, '_labels') else \
                                   reward_giver.get_reward(obs, acs, label)
                        if isinstance(curr_rew, tuple):
                            curr_rew, curr_rews = curr_rew
                            exp_rews = 1 - np.exp(
                                -curr_rews
                            ) if exp_rews is None else exp_rews + 1 - np.exp(
                                -curr_rews)
                        exp_rew += 1 - np.exp(-curr_rew)
                    mean_exp_rew = exp_rew / len(ob_expert)
                    mean_exp_rews = exp_rews / len(
                        ob_expert) if exp_rews is not None else None

                    gen_rew = 0
                    gen_rews = None
                    for obs, acs, full_obs in zip(ob_batch, ac_batch,
                                                  full_ob_batch):
                        curr_rew = reward_giver.get_reward(obs, acs)[0][0] \
                                   if not hasattr(reward_giver, '_labels') else \
                                   reward_giver.get_reward(obs, acs, label)
                        if isinstance(curr_rew, tuple):
                            curr_rew, curr_rews = curr_rew
                            gen_rews = 1 - np.exp(
                                -curr_rews
                            ) if gen_rews is None else gen_rews + 1 - np.exp(
                                -curr_rews)
                        gen_rew += 1 - np.exp(-curr_rew)
                    mean_gen_rew = gen_rew / len(ob_batch)
                    mean_gen_rews = gen_rews / len(
                        ob_batch) if gen_rews is not None else None
                    if rank == 0:
                        msg = "Network " + label + \
                            " Generator step " + str(curr_step) + ": Dicriminator reward of expert traj " \
                            + str(mean_exp_rew) + " vs gen traj " + str(mean_gen_rew)
                        if mean_exp_rews is not None and mean_gen_rews is not None:
                            msg += "\nDiscriminator multi rewards of expert " + str(mean_exp_rews) + " vs gen " \
                                    + str(mean_gen_rews)
                        logger.log(msg)
                #########################

        if not not_update:
            for label in g_losses:
                for (lossname,
                     lossval) in zip(loss_names[label] + vf_loss_names[label],
                                     g_losses[label]):
                    logger.record_tabular(lossname, lossval)
                logger.record_tabular(
                    label + "ev_tdlam_before",
                    explained_variance(segs[label]["vpred"],
                                       segs[label]["tdlamret"]))

        # ------------------ Update D ------------------
        if not freeze_d:
            logger.log("Optimizing Discriminator...")
            batch_size = len(list(segs.values())[0]['ob']) // d_step
            expert_dataset = d[expert_label]
            batch_gen = {
                label: dataset.iterbatches(
                    (segs[label]["ob"], segs[label]["ac"]),
                    include_final_partial_batch=False,
                    batch_size=batch_size)
                for label in segs if label != expert_label
            }

            d_losses = [
            ]  # list of tuples, each of which gives the loss for a minibatch
            for step in range(d_step):
                g_ob = {}
                g_ac = {}
                for label in batch_gen:  # get batches for different gens
                    g_ob[label], g_ac[label] = batch_gen[label].__next__()

                expert_batch = expert_dataset.next_batch(batch_size)

                ob_expert, ac_expert = expert_batch["ob"], expert_batch["ac"]

                for label in g_ob:
                    #########################
                    exp_rew = 0
                    exp_rews = None
                    for obs, acs in zip(ob_expert, ac_expert):
                        curr_rew = reward_giver.get_reward(obs, acs)[0][0] \
                            if not hasattr(reward_giver, '_labels') else \
                            reward_giver.get_reward(obs, acs, label)
                        if isinstance(curr_rew, tuple):
                            curr_rew, curr_rews = curr_rew
                            exp_rews = 1 - np.exp(
                                -curr_rews
                            ) if exp_rews is None else exp_rews + 1 - np.exp(
                                -curr_rews)
                        exp_rew += 1 - np.exp(-curr_rew)
                    mean_exp_rew = exp_rew / len(ob_expert)
                    mean_exp_rews = exp_rews / len(
                        ob_expert) if exp_rews is not None else None

                    gen_rew = 0
                    gen_rews = None
                    for obs, acs in zip(g_ob[label], g_ac[label]):
                        curr_rew = reward_giver.get_reward(obs, acs)[0][0] \
                            if not hasattr(reward_giver, '_labels') else \
                            reward_giver.get_reward(obs, acs, label)
                        if isinstance(curr_rew, tuple):
                            curr_rew, curr_rews = curr_rew
                            gen_rews = 1 - np.exp(
                                -curr_rews
                            ) if gen_rews is None else gen_rews + 1 - np.exp(
                                -curr_rews)
                        gen_rew += 1 - np.exp(-curr_rew)
                    mean_gen_rew = gen_rew / len(g_ob[label])
                    mean_gen_rews = gen_rews / len(
                        g_ob[label]) if gen_rews is not None else None
                    if rank == 0:
                        msg = "Dicriminator reward of expert traj " + str(mean_exp_rew) + " vs " + label + \
                            "gen traj " + str(mean_gen_rew)
                        if mean_exp_rews is not None and mean_gen_rews is not None:
                            msg += "\nDiscriminator multi expert rewards " + str(mean_exp_rews) + " vs " + label + \
                                   "gen " + str(mean_gen_rews)
                        logger.log(msg)
                        #########################

                # update running mean/std for reward_giver
                if hasattr(reward_giver, "obs_rms"):
                    reward_giver.obs_rms.update(
                        np.concatenate(list(g_ob.values()) + [ob_expert], 0))
                *newlosses, g = reward_giver.lossandgrad(
                    *(list(g_ob.values()) + list(g_ac.values()) + [ob_expert] +
                      [ac_expert]))
                d_adam.update(allmean(g), d_stepsize)
                d_losses.append(newlosses)
                logger.log(fmt_row(13, reward_giver.loss_name))
                logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        for label in ob_space:
            lrlocal = (segs[label]["ep_lens"], segs[label]["ep_rets"],
                       segs[label]["ep_true_rets"], segs[label]["ep_success"],
                       segs[label]["ep_semi_loss"])  # local values

            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
            lens, rews, true_rets, success, semi_losses = map(
                flatten_lists, zip(*listoflrpairs))

            # success
            success = [
                float(elem) for elem in success
                if isinstance(elem, (int, float, bool))
            ]  # remove potential None types
            if not success:
                success = [-1]  # set success to -1 if env has no success flag
            success_buffer[label].extend(success)

            true_rewbuffer[label].extend(true_rets)
            lenbuffer[label].extend(lens)
            rewbuffer[label].extend(rews)

            if semi_loss and semi_dataset is not None and label == get_semi_prefix(
            ):
                semi_losses = [elem * l2_w for elem in semi_losses]
                total_rewards = rews
                total_rewards = [
                    re_elem - l2_elem
                    for re_elem, l2_elem in zip(total_rewards, semi_losses)
                ]
                l2_rewbuffer.extend(semi_losses)
                total_rewbuffer.extend(total_rewards)

            logger.record_tabular(label + "EpLenMean",
                                  np.mean(lenbuffer[label]))
            logger.record_tabular(label + "EpRewMean",
                                  np.mean(rewbuffer[label]))
            logger.record_tabular(label + "EpTrueRewMean",
                                  np.mean(true_rewbuffer[label]))
            logger.record_tabular(label + "EpSuccess",
                                  np.mean(success_buffer[label]))

            if semi_loss and semi_dataset is not None and label == get_semi_prefix(
            ):
                logger.record_tabular(label + "EpSemiLoss",
                                      np.mean(l2_rewbuffer))
                logger.record_tabular(label + "EpTotalLoss",
                                      np.mean(total_rewbuffer))
            logger.record_tabular(label + "EpThisIter", len(lens))
            episodes_so_far[label] += len(lens)
            timesteps_so_far[label] += sum(lens)

            logger.record_tabular(label + "EpisodesSoFar",
                                  episodes_so_far[label])
            logger.record_tabular(label + "TimestepsSoFar",
                                  timesteps_so_far[label])
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        iters_so_far += 1
        logger.record_tabular("ItersSoFar", iters_so_far)

        if rank == 0:
            logger.dump_tabular()
            if not not_update:
                for label in g_loss_stats:
                    g_loss_stats[label].add_all_summary(
                        writer, g_losses[label], iters_so_far)
            if not freeze_d:
                d_loss_stats.add_all_summary(writer, np.mean(d_losses, axis=0),
                                             iters_so_far)

            for label in ob_space:
                # default buffers
                ep_buffers = [
                    np.mean(true_rewbuffer[label]),
                    np.mean(rewbuffer[label]),
                    np.mean(lenbuffer[label]),
                    np.mean(success_buffer[label])
                ]

                if semi_loss and semi_dataset is not None and label == get_semi_prefix(
                ):
                    ep_buffers.append(np.mean(l2_rewbuffer))
                    ep_buffers.append(np.mean(total_rewbuffer))

                ep_stats[label].add_all_summary(writer, ep_buffers,
                                                iters_so_far)

        if not_update and not freeze_g:
            not_update -= 1
Пример #21
0
def learn(
        *,
        network,
        env,
        total_timesteps,
        timesteps_per_batch=1024,  # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0,  # advantage estimation
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        vf_batch_size=64,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''
    if not isinstance(
            env.action_space, spaces.Discrete
    ):  #Atari envs are already parallel without using vecnormalize wrapper
        nenvs = env.num_envs
    else:
        nenvs = 1
    nbatch = nenvs * timesteps_per_batch
    l1regpi = network_kwargs['l1regpi']
    l2regpi = network_kwargs['l2regpi']
    l1regvf = network_kwargs['l1regvf']
    l2regvf = network_kwargs['l2regvf']
    toregularizepi = l1regpi > 0 or l2regpi > 0
    toregularizevf = l1regvf > 0 or l2regvf > 0
    toweightclippi = False
    toweightclipvf = False
    weight_clip_range_pi = 0
    weight_clip_range_vf = 0
    if network_kwargs['wclippi'] > 0:
        weight_clip_range_pi = network_kwargs['wclippi']
        print("Clipping policy network = {}".format(weight_clip_range_pi))
        toweightclippi = True
    if network_kwargs['wclipvf'] > 0:
        weight_clip_range_vf = network_kwargs['wclipvf']
        print("Clipping value network = {}".format(weight_clip_range_vf))
        toweightclipvf = True

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0

    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    batchnormpi = network_kwargs["batchnormpi"]
    batchnormvf = network_kwargs["batchnormvf"]
    dropoutpi_keep_prob = None
    todropoutpi = network_kwargs["dropoutpi"] < 1.0
    dropoutvf_keep_prob = None
    todropoutvf = network_kwargs["dropoutvf"] < 1.0
    if todropoutpi or todropoutvf:
        policy, dropoutpi_keep_prob, dropoutvf_keep_prob = build_policy(
            env, network, value_network="copy", **network_kwargs)
    else:
        policy = build_policy(env,
                              network,
                              value_network="copy",
                              **network_kwargs)

    isbnpitrainmode = None
    isbnvftrainmode = None
    if batchnormpi and batchnormvf:
        policy, isbnpitrainmode, isbnvftrainmode = policy
    elif batchnormpi and not batchnormvf:
        policy, isbnpitrainmode = policy
    elif batchnormvf and not batchnormpi:
        policy, isbnvftrainmode = policy
    #policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    if toregularizepi:
        print("Regularizing policy network: L1 = {}, L2 = {}".format(
            l1regpi, l2regpi))
        regularizerpi = tf.contrib.layers.l1_l2_regularizer(scale_l1=l1regpi,
                                                            scale_l2=l2regpi,
                                                            scope="pi")
        all_trainable_weights_pi = var_list.copy()
        regularization_penalty_pi = tf.contrib.layers.apply_regularization(
            regularizerpi, all_trainable_weights_pi)
        optimgain = optimgain - regularization_penalty_pi

    if toregularizevf:
        print("Regularizing value network: L1 = {}, L2 = {}".format(
            l1regvf, l2regvf))
        regularizervf = tf.contrib.layers.l1_l2_regularizer(scale_l1=l1regvf,
                                                            scale_l2=l2regvf,
                                                            scope="vf")
        all_trainable_weights_vf = vf_var_list
        regularization_penalty_vf = tf.contrib.layers.apply_regularization(
            regularizervf, all_trainable_weights_vf)
        vferr = vferr + regularization_penalty_vf

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])

    lossespi_inputs = [flat_tangent, ob, ac, atarg]
    lossesvf_inputs = [ob, ret]
    if todropoutpi:
        lossespi_inputs.append(dropoutpi_keep_prob)
    if todropoutvf:
        lossesvf_inputs.append(dropoutvf_keep_prob)
    if batchnormpi:
        lossespi_inputs.append(isbnpitrainmode)
    if batchnormvf:
        lossesvf_inputs.append(isbnvftrainmode)
    compute_losses = U.function(lossespi_inputs[1:], losses)
    compute_lossandgrad = U.function(
        lossespi_inputs[1:], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function(lossespi_inputs, fvp)
    compute_vflossandgrad = U.function(lossesvf_inputs,
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(
        pi,
        env,
        timesteps_per_batch,
        nenvs,
        stochastic=True,
        dropoutpi_keep_prob=(dropoutpi_keep_prob if todropoutpi else None),
        dropoutvf_keep_prob=(dropoutvf_keep_prob if todropoutvf else None),
        isbnpitrainmode=isbnpitrainmode,
        isbnvftrainmode=isbnvftrainmode)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    if toweightclippi:
        _wclip_ops_pi = []
        wclip_bounds_pi = [-weight_clip_range_pi, weight_clip_range_pi]
        for toclipvar in var_list:
            if 'logstd' in toclipvar.name:
                continue
            _wclip_ops_pi.append(
                tf.assign(
                    toclipvar,
                    tf.clip_by_value(toclipvar, wclip_bounds_pi[0],
                                     wclip_bounds_pi[1])))
        _wclip_op_pi = tf.group(*_wclip_ops_pi)
    if toweightclipvf:
        _wclip_ops_vf = []
        wclip_bounds_vf = [-weight_clip_range_vf, weight_clip_range_vf]
        for toclipvar in vf_var_list:
            _wclip_ops_vf.append(
                tf.assign(
                    toclipvar,
                    tf.clip_by_value(toclipvar, wclip_bounds_vf[0],
                                     wclip_bounds_vf[1])))
        _wclip_op_vf = tf.group(*_wclip_ops_vf)

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam, nenvs)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy
        if isinstance(env.action_space, spaces.Discrete):
            seg["ob"] = seg["ob"].reshape(
                np.concatenate([[-1, seg["ob"].shape[1]],
                                seg["ob"].shape[1:]]))
        args = seg["ob"], seg["ac"], atarg
        if todropoutpi:
            args = args + (network_kwargs['dropoutpi'], )
        if batchnormpi:
            args = args + (True, )

        fvpargs = [arr[::5] for arr in args if isinstance(arr, np.ndarray)]
        if todropoutpi:
            fvpargs.append(network_kwargs['dropoutpi'])
        if batchnormpi:
            fvpargs.append(True, )

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
            assert np.isfinite(stepdir).all()
            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(
                    np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" %
                           (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        if toweightclippi:
            U.get_session().run(_wclip_op_pi)

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=vf_batch_size):
                    vflossandgrad_inputs = (mbob, mbret)
                    if todropoutvf:
                        vflossandgrad_inputs += (network_kwargs["dropoutvf"], )
                    if batchnormvf:
                        vflossandgrad_inputs += (True, )

                    g = allmean(compute_vflossandgrad(*vflossandgrad_inputs))
                    if callable(vf_stepsize):
                        vfadam.update(
                            g, vf_stepsize(timesteps_so_far / total_timesteps))
                    else:
                        vfadam.update(g, vf_stepsize)

        if toweightclipvf:
            U.get_session().run(_wclip_op_vf)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        meanret = [np.mean(arr) for arr in seg["ep_rets"]]
        meanret = sum(meanret) / len(meanret)
        totallen = [np.sum(arr) for arr in seg["ep_lens"]]
        totallen = sum(totallen)
        meanlen = [np.mean(arr) for arr in seg["ep_lens"]]
        meanlen = sum(meanlen) / len(meanlen)
        logger.record_tabular("EpLenMean", meanlen)
        logger.record_tabular("EpRewMean", meanret)
        totalepi = sum([len(arr) for arr in seg["ep_lens"]])
        logger.record_tabular("EpThisIter", totalepi)
        episodes_so_far += totalepi
        timesteps_so_far += totallen
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()

    return pi
Пример #22
0
    def _update_policy(self, rollouts, it):
        pi = self._policy
        seg = rollouts[self.id]
        info = defaultdict(list)

        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        atarg = (atarg - atarg.mean()) / atarg.std()
        info['adv'] = np.mean(atarg)

        other_ob_list = []
        for i, other_pi in enumerate(self._pis):
            other_ob_list.extend(other_pi.get_ob_list(rollouts[i]["ob"]))

        ob_list = pi.get_ob_list(ob)
        args = ob_list * self._config.num_contexts + \
            other_ob_list * 2 + ob_list + [ac, atarg]
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return self._all_mean(self._compute_fvp(
                p, *fvpargs)) + self._config.cg_damping * p

        self._update_oldpi()

        with self.timed("compute gradient"):
            lossbefore = self._compute_lossandgrad(*args)
            lossbefore = {
                k: self._all_mean(np.array(lossbefore[k]))
                for k in sorted(lossbefore.keys())
            }
        g = lossbefore['g']

        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with self.timed("compute conjugate gradient"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=self._config.cg_iters,
                             verbose=False)
            assert np.isfinite(stepdir).all()
            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / self._config.max_kl)
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore['pol_loss']
            stepsize = 1.0
            thbefore = self._get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                self._set_from_flat(thnew)
                meanlosses = self._compute_losses(*args)
                meanlosses = {
                    k: self._all_mean(np.array(meanlosses[k]))
                    for k in sorted(meanlosses.keys())
                }
                for key, value in meanlosses.items():
                    if key != 'g':
                        info[key].append(value)
                surr = meanlosses['pol_loss']
                kl = meanlosses['kl']
                meanlosses = np.array(list(meanlosses.values()))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" %
                           (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > self._config.max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                self._set_from_flat(thbefore)
            if self._num_workers > 1 and it % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(),
                     self._vf_adam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0])
                    for ps in paramsums[1:]), paramsums

        with self.timed("updating value function"):
            for _ in range(self._config.vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (ob, tdlamret),
                        include_final_partial_batch=False,
                        batch_size=self._config.vf_batch_size):
                    ob_list = pi.get_ob_list(mbob)
                    g = self._all_mean(
                        self._compute_vflossandgrad(*ob_list, mbret))
                    self._vf_adam.update(g, self._config.vf_stepsize)
                    vf_loss = self._all_mean(
                        np.array(self._compute_vfloss(*ob_list, mbret)))
                    info['vf_loss'].append(vf_loss)

        for key, value in info.items():
            info[key] = np.mean(value)
        return info