def GeResult(): # Dataset Dataset = BDXJTU2019_test(root='/home/dell/Desktop/2019BaiduXJTU/data') Dataloader = data.DataLoader(Dataset, 1, num_workers=1, shuffle=False, pin_memory=True) net1 = MultiModalNet1('se_resnet50', 'DPN26', 0.5) net1.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/se_resnet50_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_9.pth' )) net1.to(device) net1.eval() net2 = MultiModalNet('se_resnet152', 'DPN26', 0.5) net2.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/se_resnet152_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_6.pth' )) net2.to(device) net2.eval() net3 = MultiModalNet2('densenet201', 'DPN26', 0.5) net3.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/densenet201_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_3.pth' )) net3.to(device) net3.eval() net4 = MultiModalNet2('densenet201', 'DPN26', 0.5) net4.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/densenet201_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_10.pth' )) net4.to(device) net4.eval() net5 = MultiModalNet1('multiscale_se_resnext', 'DPN26', 0.5) net5.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/multiscale_se_resnext_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_11.pth' )) net5.to(device) net5.eval() net6 = MultiModalNet1('multiscale_resnet', 'DPN26', 0.5) net6.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/multiscale_resnet_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_10.pth' )) net6.to(device) net6.eval() net7 = MultiModalNet2('densenet201', 'DPN26', 0.5) net7.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/densenet201_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_4.pth' )) net7.to(device) net7.eval() #Network = pnasnet5large(6, None) #Network = ResNeXt101_64x4d(6) # net1 =MultiModalNet('se_resnext50_32x4d', 'DPN26', 0.5) # net1.load_state_dict(torch.load('/home/zxw/2019BaiduXJTU/weights/MultiModal_se_resnext50_32x4d_resample_pretrained/BDXJTU2019_SGD_16.pth')) # net1.eval() # net2 = MultiModalNet('multiscale_se_resnext_HR', 'DPN26', 0.5) # net2.load_state_dict(torch.load('/home/zxw/2019BaiduXJTU/weights/MultiModal_50_MS_resample_pretrained_HR/BDXJTU2019_SGD_26.pth')) # net2.eval() # net3 = MultiModalNet('se_resnext50_32x4d', 'DPN26', 0.5) # net3.load_state_dict(torch.load('/home/zxw/2019BaiduXJTU/weights/MultiModal_se_resnext50_32x4d_resample_pretrained_w/BDXJTU2019_SGD_50.pth')) # net3.eval() # net4 = MultiModalNet('se_resnext50_32x4d', 'DPN26', 0.5) # net4.load_state_dict(torch.load('/home/zxw/2019BaiduXJTU/weights/MultiModal_se_resnext50_32x4d_resample_pretrained_1/BDXJTU2019_SGD_80.pth')) # net4.eval() filename = 'MM_ensemble4_TTA.txt' f = open(filename, 'w') for (Input_O, Input_H, visit_tensor, anos) in Dataloader: ConfTensor_O = net1.forward(Input_O.to(device), visit_tensor.to(device)) ConfTensor_H = net2.forward(Input_O.to(device), visit_tensor.to(device)) ConfTensor_V = net3.forward(Input_O.to(device), visit_tensor.to(device)) ConfTensor_V0 = net3.forward(Input_H.to(device), visit_tensor.to(device)) ConfTensor_1 = net4.forward(Input_O.to(device), visit_tensor.to(device)) ConfTensor_10 = net4.forward(Input_H.to(device), visit_tensor.to(device)) ConfTensor_2 = net5.forward(Input_O.to(device), visit_tensor.to(device)) ConfTensor_20 = net5.forward(Input_H.to(device), visit_tensor.to(device)) ConfTensor_3 = net6.forward(Input_O.to(device), visit_tensor.to(device)) ConfTensor_4 = net7.forward(Input_O.to(device), visit_tensor.to(device)) preds = torch.nn.functional.normalize( ConfTensor_O) + torch.nn.functional.normalize( ConfTensor_H) + 2 * torch.nn.functional.normalize( ConfTensor_V) + torch.nn.functional.normalize( ConfTensor_V0) + torch.nn.functional.normalize( ConfTensor_1 ) + torch.nn.functional.normalize( ConfTensor_10 ) + 2 * torch.nn.functional.normalize( ConfTensor_2) + torch.nn.functional.normalize( ConfTensor_20 ) + torch.nn.functional.normalize( ConfTensor_3 ) + 2 * torch.nn.functional.normalize(ConfTensor_4) _, pred = preds.data.topk(1, 1, True, True) #f.write(anos[0] + ',' + CLASSES[4] + '\r\n') print(anos[0][:-4] + '\t' + CLASSES[pred[0][0]] + '\n') f.writelines(anos[0][:-4] + '\t' + CLASSES[pred[0][0]] + '\n') f.close()
def GeResult(): # Dataset Dataset_val = MM_BDXJTU2019(root='/home/dell/Desktop/2019BaiduXJTU/data', mode='1_val') Dataloader_val = data.DataLoader(Dataset_val, batch_size=1, num_workers=4, shuffle=True, pin_memory=True) class_names = [ '001', '002', '003', '004', '005', '006', '007', '008', '009' ] # construct network epoch = 13 net = MultiModalNet1('multiscale_resnet', 'DPN26', 0.5) # if torch.cuda.device_count() > 1: # print("Let's use", torch.cuda.device_count(), "GPUs!") # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs # net = nn.DataParallel(net) net.to(device) net.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/multiscale_resnet_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_' + str(epoch) + '.pth')) # net.load_state_dict(torch.load('/home/dell/Desktop/2019BaiduXJTU/weights/densenet201_se_resnext50_32x4d_resample_pretrained_80w_1/inception_008.pth')) print('load ' + str(epoch) + ' epoch model') net.eval() results = [] results_anno = [] for i, (Input_img, Input_vis, Anno) in enumerate(Dataloader_val): Input_img = Input_img.to(device) Input_vis = Input_vis.to(device) ConfTensor = net.forward(Input_img, Input_vis) _, pred = ConfTensor.data.topk(1, 1, True, False) results.append(pred.item()) results_anno.append(Anno) #append annotation results if ((i + 1) % 1000 == 0): print(i + 1) print('Accuracy of Orignal Input: %0.6f' % (accuracy_score(results, results_anno, normalize=True))) # print accuracy of different input print('Accuracy of Orignal Input: %0.6f' % (accuracy_score(results, results_anno, normalize=True))) cnf_matrix = confusion_matrix(results_anno, results) cnf_tr = np.trace(cnf_matrix) cnf_tr = cnf_tr.astype('float') print(cnf_tr / len(Dataset_val)) plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization') plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix') plt.show()
def main(): #create model best_prec1 = 0 if args.basenet == 'se_resnet152': model = MultiModalNet('se_resnet152', 'DPN26', 0.5) #net = Networktorch.nn.DataParallel(Network, device_ids=[0]) elif args.basenet == 'se_resnext50_32x4d': model = MultiModalNet1('se_resnext50_32x4d', 'DPN26', 0.5) elif args.basenet == 'se_resnet50': model = MultiModalNet1('se_resnet50', 'DPN26', 0.5) elif args.basenet == 'densenet201': model = MultiModalNet2('densenet201', 'DPN26', 0.5) elif args.basenet == 'oct_resnet101': model = oct_resnet101() # print("load pretrained model from /home/dell/Desktop/2019BaiduXJTU/weights/densenet201_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_4.pth") # pre='/home/dell/Desktop/2019BaiduXJTU/weights/densenet201_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_1.pth' # model.load_state_dict(torch.load(pre)) #net = Networktorch.nn.DataParallel(Network, device_ids=[0]) if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs model = nn.DataParallel(model) model.to(device) # Dataset Aug = Augmentation() Dataset_train = MM_BDXJTU2019(root='/home/dell/Desktop/2019BaiduXJTU/data', mode='MM_1_train', transform=Aug) #weights = [class_ration[label] for data,label in Dataset_train] Dataloader_train = data.DataLoader(Dataset_train, 128, num_workers=4, shuffle=True, pin_memory=True) Dataset_val = MM_BDXJTU2019(root='/home/dell/Desktop/2019BaiduXJTU/data', mode='val') Dataloader_val = data.DataLoader(Dataset_val, batch_size=32, num_workers=4, shuffle=True, pin_memory=True) # criterion = nn.CrossEntropyLoss(weight = weights).cuda() criterion = nn.CrossEntropyLoss().to(device) # Optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr = args.lr, momentum = args.momentum, # weight_decay = args.weight_decay) Optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) for epoch in range(args.start_epoch, args.epochs): adjust_learning_rate(Optimizer, epoch) # train for one epoch train(Dataloader_train, model, criterion, Optimizer, epoch ) #train(Dataloader_train, Network, criterion, Optimizer, epoch) # evaluate on validation set #_,_ = validate(Dataloader_val, model, criterion) #prec1 = validate(Dataloader_val, Network, criterion) # remember best prec@1 and save checkpoint #is_best = prec1 > best_prec1 #best_prec1 = max(prec1, best_prec1) #if is_best: if epoch % 1 == 0: torch.save( model.module.state_dict(), 'weights/' + args.basenet + '_se_resnext50_32x4d_resample_pretrained_80w_1/' + 'BDXJTU2019_SGD_' + repr(epoch) + '.pth')
def GeResult(): # Dataset Dataset_val = MM_BDXJTU2019(root='/home/dell/Desktop/2019BaiduXJTU/data', mode='val') Dataloader_val = data.DataLoader(Dataset_val, batch_size=1, num_workers=2, shuffle=True, pin_memory=True) class_names = [ '001', '002', '003', '004', '005', '006', '007', '008', '009' ] net1 = MultiModalNet1('se_resnet50', 'DPN26', 0.5) net1.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/se_resnet50_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_9.pth' )) net1.to(device) net1.eval() net2 = MultiModalNet('se_resnet152', 'DPN26', 0.5) net2.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/se_resnet152_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_4.pth' )) net2.to(device) net2.eval() net3 = MultiModalNet2('densenet201', 'DPN26', 0.5) net3.load_state_dict( torch.load( '/home/dell/Desktop/2019BaiduXJTU/weights/densenet201_se_resnext50_32x4d_resample_pretrained_80w_1/BDXJTU2019_SGD_3.pth' )) net3.to(device) net3.eval() # construct network # net1 =MultiModalNet('se_resnext50_32x4d', 'DPN26', 0.5) # net1.load_state_dict(torch.load('/home/dell/Desktop/2019BaiduXJTU/models/BDXJTU2019_SGD_16.pth')) # net1.eval() # net2 = MultiModalNet('se_resnext50_32x4d', 'DPN26', 0.5) # net2.load_state_dict(torch.load('/home/dell/Desktop/2019BaiduXJTU/models/BDXJTU2019_SGD_26.pth')) # net2.eval() # net3 =MultiModalNet('se_resnext50_32x4d', 'DPN26', 0.5) # net3.load_state_dict(torch.load('/home/dell/Desktop/2019BaiduXJTU/models/BDXJTU2019_SGD_50.pth')) # net3.eval() results = [] results_anno = [] for i, (Input_img, Input_vis, Anno) in enumerate(Dataloader_val): Input_img = Input_img.to(device) Input_vis = Input_vis.to(device) ConfTensor1 = net1.forward(Input_img, Input_vis) ConfTensor2 = net2.forward(Input_img, Input_vis) ConfTensor3 = net3.forward(Input_img, Input_vis) ConfTensor = (torch.nn.functional.normalize(ConfTensor1) + torch.nn.functional.normalize(ConfTensor2) + torch.nn.functional.normalize(ConfTensor3)) / 3 score, pred = ConfTensor.data.topk(1, 1, True, False) #print(score.item()) if (score.item() > 0.85): results.append(pred.item()) results_anno.append(Anno) #append annotation results if ((i + 1) % 2000 == 0): print(i + 1) print(len(results)) print('Accuracy of Orignal Input: %0.6f' % (accuracy_score(results, results_anno, normalize=True))) # print accuracy of different input print('Accuracy of Orignal Input: %0.6f' % (accuracy_score(results, results_anno, normalize=True))) cnf_matrix = confusion_matrix(results_anno, results) cnf_tr = np.trace(cnf_matrix) cnf_tr = cnf_tr.astype('float') print(cnf_tr / len(Dataset_val)) plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization') plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix') plt.show()