Пример #1
0
def _cumsum(x, axis=0, exclusive=0, reverse=0, name=''):
    if isinstance(axis, int):
        axis = bF.to_tensor(axis)
    return bF.cumsum(x,
                     axis,
                     exclusive=exclusive,
                     reverse=reverse,
                     debugContext=name)
Пример #2
0
def _top_k(input, k=1, sorted=True, name=''):
    dim = input.shape.ndims - 1
    assert input.pureShape[-1] >= k
    k = bF.to_tensor(k, dtype='INT64')
    values, order = bF.topk(input,
                            k,
                            sorted=sorted,
                            dim=dim,
                            debugContext=name)
    return values, order
Пример #3
0
def nms(input_scores,
        input_boxes,
        threshold=0.7,
        numDetections=300,
        score_threshold=None,
        debugContext=''):
    load_lib()
    input_scores = input_scores.cast('FLOAT')
    input_boxes = input_boxes.cast('FLOAT')
    valid_area_mask = bF.transpose(get_valid_area_mask(input_boxes),
                                   [1, 0])  # 1,n
    input_scores = input_scores + 1e-6  # if score==0, proposals will be ignored
    local_input_scores = bF.identity(input_scores * valid_area_mask,
                                     debugContext=debugContext).detach()
    local_input_boxes = bF.identity(input_boxes,
                                    debugContext=debugContext).detach()

    if local_input_scores.shape.ndims == 1:
        local_input_scores = local_input_scores.unsqueeze(0)
    if local_input_boxes.shape.ndims == 2:
        local_input_boxes = local_input_boxes.unsqueeze(0)
    assert local_input_boxes.pureShape[0] == 1, 'only implemented batch=1'
    if score_threshold is not None:
        assert isinstance(score_threshold, float)
        local_mask = bF.greater(
            local_input_scores,
            bF.to_tensor(score_threshold, dtype=local_input_scores.dtype))
        local_mask = bF.cast(local_mask, target_type=local_input_scores.dtype)
        local_input_scores = local_input_scores * local_mask
    with bF.name_scope("nms"):
        out = bF.get_builder().customOp(opName="nms",
                                        opVersion=1,
                                        domain="ai.graphcore",
                                        inputs=[
                                            local_input_scores.getIpuIndex(),
                                            local_input_boxes.getIpuIndex()
                                        ],
                                        attributes={
                                            "threshold": threshold,
                                            "numDetections": numDetections
                                        },
                                        numOutputs=3,
                                        name="nmsCustomOp")
        #
        _, output_boxes, output_keep = out[0], bF.TTensor(out[1]), bF.TTensor(
            out[2])
        targetType = input_scores.dtype
        roiKeeps_flag = bF.cast(bF.greater(
            output_keep, bF.constant(np.asarray(-1, dtype=np.int32))),
            target_type='INT32')
        num_valids = bF.reduceSum(roiKeeps_flag, axes=[1])
        roiKeeps_flag = bF.cast(roiKeeps_flag, target_type=targetType)
        roiKeeps_flag = bF.unsqueeze(roiKeeps_flag, [-1])
        output_boxes = bF.mul([output_boxes, roiKeeps_flag])
    return output_boxes, output_keep, num_valids
Пример #4
0
def slice(input_, begin, size, name=''):
    axes = list(builtins.range(len(begin)))
    input_shape = input_.pureShape
    assert len(begin) == len(size)
    ends = []
    for begin_ele, size_ele, shape_ele in zip(begin, size, input_shape):
        if size_ele == -1:
            ends.append(shape_ele)
        else:
            ends.append(begin_ele + size_ele)
    if isinstance(begin, list):
        begin = bF.to_tensor(begin)
    if isinstance(ends, list):
        ends = bF.to_tensor(ends)
    if isinstance(axes, list):
        axes = bF.to_tensor(axes)
    return bF.gc_slice(input_,
                       axes,
                       starts=begin,
                       ends=ends,
                       debugContext=name)
Пример #5
0
def minimum(x, y, name=""):
    x = bF.to_tensor(x)
    y = bF.to_tensor(y)
    return bF.min([x, y], debugContext=name)
Пример #6
0
def less(x, y, name=''):
    x = bF.to_tensor(x)
    y = bF.to_tensor(y)
    return bF.less(x, y, debugContext=name)
Пример #7
0
def greater(x, y, name=''):
    x = bF.to_tensor(x)
    y = bF.to_tensor(y)
    return bF.greater(x, y, debugContext=name)