Пример #1
0
def dict_sampler2PySP(distrdict, \
                      TreeTemplateFileName,
                      NumScen,
                      OutDir,
                      Seed = None,
                      ScenTemplateFileName = None):
    """
    Once you have a distrdict that has the usual d2p dictionary
    indexes and values that are inputs needed to create
    scipy distribution objects (see class IndepScipys) that are
    used to draw SumScen samples (independent across params) and
    uses the TreeTemplateFilame to create a ScenarioStructure.dat
    for PySP, which is written to OutDir. A random number seed
    and the scenario template is optional.
    """
    dict_distr = IndepScipys(distrdict)

    treetemp = bc.PySP_Tree_Template()
    treetemp.read_AMPL_template(TreeTemplateFileName)

    if ScenTemplateFileName is not None:
        scentemp = bc.PySP_Scenario_Template()
        scentemp.read_JSON_template(ScenTemplateFileName)
    else:
        scentemp = None

    # we know we are using scipy distrubutions, so reseed accordingly
    if Seed is not None:
        np.random.seed(Seed)

    pyspscenlist = []
    rawnodelist = []  # all nodes created
    ### we should copy distrdict so it doesn't get clobbered
    localdict = copy.deepcopy(distrdict)
    for s in range(NumScen):
        # distrdict has the correct indexes, of course.
        # So now it will get the sample values, but
        # they will be overwritten next time through the loop
        # so all processing needs to be done in the loop.
        # Note: dict_distr has the distributions.
        dict_distr.draw_sample_into(localdict)
        rawnode = bc.Raw_Node_Data(filespec=None,
                                   dictin=localdict,
                                   name="rs" + str(s + 1),
                                   parentname='ROOT',
                                   prob=1. / float(NumScen))
        # it would not be hard to go multistage, given branching factors
        nodelistforscen = []
        nodelistforscen.append(rawnode)  # single for two-stage problem
        PySPScen = bc.PySP_Scenario(bc.Raw_Scenario_Data(nodelistforscen), \
                                    scentemp)
        pyspscenlist.append(PySPScen)
        rawnodelist.append(rawnode)  # needed for the tree
        # To use an standard (AMPL format) ScenarioStructure.dat the
        # name has to be the PySPScen name because the tree constructor
        # expects that.
        fname = os.path.join(OutDir, PySPScen.name + ".json")
        with open(fname, "w") as f:
            json.dump(rawnode.valdict, f)

    # we have everything we need
    tree = bc.PySP_Tree(treetemp, pyspscenlist, rawnodelist)
    tree.Write_ScenarioStructure_dat_file(
        os.path.join(OutDir, 'ScenarioStructure.dat'))
Пример #2
0
def dict_representative_points_scenarios(distrdict,
                      TreeTemplateFileName,
                      CutPointFileName,
                      NumScen,
                      OutDir,
                      Seed=None,
                      ScenTemplateFileName=None,
                      Abstract=False):
    """
    Once you have a distrdict that has the usual d2p dictionary
    indexes and values that are inputs needed to create
    scipy distribution objects (see class IndepScipys) that are
    used to draw NumScen samples (independent across params) and
    uses the TreeTemplateFilename to create a ScenarioStructure.dat
    for PySP, which is written to OutDir. A random number seed
    and the scenario template is optional.
    """
    dict_distr = IndepScipys(distrdict)

    treetemp = bc.PySP_Tree_Template()
    treetemp.read_AMPL_template(TreeTemplateFileName)

    cutpoint_sets = cutpoint_set.parse_cutpoint_file(CutPointFileName)

    if ScenTemplateFileName is not None:
        scentemp = bc.PySP_Scenario_Template()
        scentemp.read_AMPL_template_with_tokens(ScenTemplateFileName)
    else:
        scentemp = None

    # we know we are using scipy distributions, so reseed accordingly
    if Seed is not None:
        np.random.seed(Seed)

    pyspscenlist = []
    rawnodelist = []  # all nodes created
    ### we should copy distrdict so it doesn't get clobbered
    localdict = copy.deepcopy(distrdict)
    rectangledict = copy.deepcopy(distrdict)

    interval_count = sum(len(cpt_set.intervals) for cpt_set in cutpoint_sets)

    for cpt_set in cutpoint_sets:
        for name in cpt_set.cutpoint_names:
            # distrdict has the correct indexes, of course.
            # So now it will get the sample values, but
            # they will be overwritten next time through the loop
            # so all processing needs to be done in the loop.
            # Note: dict_distr has the distributions.
            interval = cpt_set.get(name)
            for pname in rectangledict:
                if isinstance(rectangledict[pname], dict):
                    for pindex in rectangledict[pname]:
                        rectangledict[pname][pindex] = interval
                else:
                    rectangledict[pname] = interval

            dict_distr.pick_representative_points(localdict, rectangledict)
            rawnode = bc.Raw_Node_Data(filespec=None,
                                       dictin=localdict,
                                       name=name,
                                       parentname='ROOT',
                                       prob=1. / interval_count)
            # it would not be hard to go multistage, given branching factors
            nodelistforscen = []
            nodelistforscen.append(rawnode)  # single for two-stage problem
            PySPScen = bc.PySP_Scenario(bc.Raw_Scenario_Data(nodelistforscen),
                                        scentemp)
            pyspscenlist.append(PySPScen)
            rawnodelist.append(rawnode)  # needed for the tree
            # To use an standard (AMPL format) ScenarioStructure.dat the
            # name has to be the PySPScen name because the tree constructor
            # expects that.
            if not Abstract:
                fname = os.path.join(OutDir, PySPScen.name + ".json")
                with open(fname, "w") as f:
                    json.dump(rawnode.valdict, f)
            else:
                fname = os.path.join(OutDir, PySPScen.name + ".dat")
                with open(fname, "wt") as f:
                    for line in PySPScen.scenariodata:
                        f.write(line)

    # we have everything we need
    tree = bc.PySP_Tree(treetemp, pyspscenlist, rawnodelist)
    tree.Write_ScenarioStructure_dat_file(os.path.join(OutDir, 'ScenarioStructure.dat'))