Пример #1
0
def read_img_seq(path, require_mod_crop=False, scale=1):
    """Read a sequence of images from a given folder path.

    Args:
        path (list[str] | str): List of image paths or image folder path.
        require_mod_crop (bool): Require mod crop for each image.
            Default: False.
        scale (int): Scale factor for mod_crop. Default: 1.

    Returns:
        Tensor: size (t, c, h, w), RGB, [0, 1].
    """
    if isinstance(path, list):
        img_paths = path
    else:
        img_paths = sorted([osp.join(path, v) for v in mmcv.scandir(path)])
    imgs = [mmcv.imread(v).astype(np.float32) / 255. for v in img_paths]
#     imgs = []
#     for v in img_paths:
#         imm = mmcv.imread(v).astype(np.float32) / 255.
#         w = v[:-4]+'_40.png'
#         imm_3d = mmcv.imread(w).astype(np.float32) / 255.
#         imm_concat_3d = np.concatenate((imm,imm_3d),axis=2)
#         print(imm_concat_3d.shape)
#         print(imm_3d.shape)
#         imgs.append(imm_concat_3d)
    
    if require_mod_crop:
        imgs = [mod_crop(img, scale) for img in imgs]
    imgs = totensor(imgs, bgr2rgb=True, float32=True)
    imgs = torch.stack(imgs, dim=0)
    return imgs
Пример #2
0
def calculate_lpips(img1, img2, crop_border, input_order='HWC'):
    """Calculate LPIPS metric.

    We use the official params estimated from the pristine dataset.
    We use the recommended block size (96, 96) without overlaps.

    Args:
        img (ndarray): Input image whose quality needs to be computed.
            The input image must be in range [0, 255] with float/int type.
            The input_order of image can be 'HW' or 'HWC' or 'CHW'. (BGR order)
            If the input order is 'HWC' or 'CHW', it will be converted to gray
            or Y (of YCbCr) image according to the ``convert_to`` argument.
        crop_border (int): Cropped pixels in each edge of an image. These
            pixels are not involved in the metric calculation.
        input_order (str): Whether the input order is 'HW', 'HWC' or 'CHW'.
            Default: 'HWC'.

    Returns:
        float: LPIPS result.
    """

    assert img1.shape == img2.shape, (
        f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
    if input_order not in ['HWC', 'CHW']:
        raise ValueError(
            f'Wrong input_order {input_order}. Supported input_orders are '
            '"HWC" and "CHW"')
    img1 = reorder_image(img1, input_order=input_order)
    img2 = reorder_image(img2, input_order=input_order)
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)

    if crop_border != 0:
        img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
        img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]

    img1 = img1.astype(np.float32)
    img2 = img2.astype(np.float32)

    img1, img2 = totensor([img1, img2], bgr2rgb=False, float32=True)

    img1 = img1.unsqueeze(0)
    img2 = img2.unsqueeze(0)

    # image should be RGB, IMPORTANT: normalized to [-1,1]
    img1 = (img1 / 255. - 0.5) * 2
    img2 = (img2 / 255. - 0.5) * 2

    loss_fn_alex = lpips.LPIPS(net='alex',
                               verbose=False)  # best forward scores

    metric = loss_fn_alex(img1, img2).squeeze(0).float().detach().cpu().numpy()
    return metric.mean()
    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'),
                                          **self.io_backend_opt)

        # random reverse
        if self.random_reverse and random.random() < 0.5:
            self.neighbor_list.reverse()

        scale = self.opt['scale']
        gt_size = self.opt['gt_size']
        key = self.keys[index]
        clip, seq = key.split('/')  # key example: 00001/0001

        # get the GT frame (im4.png)
        if self.is_lmdb:
            img_gt_path = f'{key}/im4'
        else:
            img_gt_path = self.gt_root / clip / seq / 'im4.png'
        img_bytes = self.file_client.get(img_gt_path, 'gt')
        img_gt = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.

        # get the neighboring LQ frames
        img_lqs = []
        for neighbor in self.neighbor_list:
            if self.is_lmdb:
                img_lq_path = f'{clip}/{seq}/im{neighbor}'
            else:
                img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
            img_bytes = self.file_client.get(img_lq_path, 'lq')
            img_lq = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.
            img_lqs.append(img_lq)

        # randomly crop
        img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale,
                                             img_gt_path)

        # augmentation - flip, rotate
        img_lqs.append(img_gt)
        img_results = augment(img_lqs, self.opt['use_flip'],
                              self.opt['use_rot'])

        img_results = totensor(img_results)
        img_lqs = torch.stack(img_results[0:-1], dim=0)
        img_gt = img_results[-1]

        # img_lqs: (t, c, h, w)
        # img_gt: (c, h, w)
        # key: str
        return {'lq': img_lqs, 'gt': img_gt, 'key': key}
Пример #4
0
    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'),
                                          **self.io_backend_opt)

        # load lq image
        lq_path = self.paths[index]
        img_bytes = self.file_client.get(lq_path)
        img_lq = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.

        # TODO: color space transform
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_lq = totensor(img_lq, bgr2rgb=True, float32=True)

        return {'lq': img_lq, 'lq_path': lq_path}
Пример #5
0
    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'),
                                          **self.io_backend_opt)

        lq_path = self.paths[index]['lq_path']
        img_bytes = self.file_client.get(lq_path, 'lq')
        img_lq = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.

        # TODO: color space transform
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_lq = totensor(img_lq, bgr2rgb=True, float32=True)
        # normalize
        if self.mean is not None or self.std is not None:
            normalize(img_lq, self.mean, self.std, inplace=True)
        return {'lq': img_lq, 'lq_path': lq_path}
Пример #6
0
    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'),
                                          **self.io_backend_opt)

        # load gt image
        gt_path = self.paths[index]
        img_bytes = self.file_client.get(gt_path)
        img_gt = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.

        # random horizontal flip
        img_gt = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False)
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_gt = totensor(img_gt, bgr2rgb=True, float32=True)
        # normalize
        normalize(img_gt, self.mean, self.std, inplace=True)
        return {'gt': img_gt, 'gt_path': gt_path}
Пример #7
0
    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(
                self.io_backend_opt.pop('type'), **self.io_backend_opt)

        scale = self.opt['scale']
        lq_map_type = self.opt['lq_map_type']
        gt_map_type = self.opt['gt_map_type']

        # Load gt and lq images. Dimension order: HWC; channel order: RGGB;
        # HDR image range: [0, +inf], float32.
        gt_path = self.paths[index]['gt_path']
        lq_path = self.paths[index]['lq_path']
        img_gt = self.file_client.get(gt_path)
        img_lq = self.file_client.get(lq_path)

        # tone mapping
        img_lq = self._tonemap(img_lq, type=lq_map_type)
        img_gt = self._tonemap(img_gt, type=gt_map_type)

        # expand dimension
        img_gt = self._expand_dim(img_gt)
        img_lq = self._expand_dim(img_lq)

        # augmentation
        if self.opt['phase'] == 'train':
            gt_size = self.opt['gt_size']
            # random crop
            img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale,
                                                gt_path)
            # flip, rotation
            img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_flip'],
                                     self.opt['use_rot'])

        # TODO: color space transform
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_gt, img_lq = totensor([img_gt, img_lq], bgr2rgb=False, float32=True)

        return {
            'lq': img_lq,
            'gt': img_gt,
            'lq_path': lq_path,
            'gt_path': gt_path
        }
Пример #8
0
def read_img_seq(path, require_mod_crop=False, scale=1):
    """Read a sequence of images from a given folder path.
    Args:
        path (list[str] | str): List of image paths or image folder path.
        require_mod_crop (bool): Require mod crop for each image.
            Default: False.
        scale (int): Scale factor for mod_crop. Default: 1.
    Returns:
        Tensor: size (t, c, h, w), RGB, [0, 1].
    """
    if isinstance(path, list):
        img_paths = path
    else:
        img_paths = sorted([osp.join(path, v) for v in mmcv.scandir(path)])
    imgs = [mmcv.imread(v).astype(np.float32) / 255. for v in img_paths]
    if require_mod_crop:
        imgs = [mod_crop(img, scale) for img in imgs]
    imgs = totensor(imgs, bgr2rgb=True, float32=True)
    imgs = torch.stack(imgs, dim=0)
    return imgs
    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'),
                                          **self.io_backend_opt)

        scale = self.opt['scale']

        # Load gt and lq images. Dimension order: HWC; channel order: BGR;
        # image range: [0, 1], float32.
        gt_path = self.paths[index]['gt_path']
        img_bytes = self.file_client.get(gt_path, 'gt')
        img_gt = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.
        img_gt_h = img_gt.shape[0]
        img_gt_w = img_gt.shape[1]

        lq_path = self.paths[index]['lq_path']
        img_bytes = self.file_client.get(lq_path, 'lq')
        img_lq = np.copy(np.frombuffer(img_bytes, dtype='float32')).reshape(
            img_gt_h // scale, img_gt_w // scale, -1)

        # No augmentation for training
        # if self.opt['phase'] == 'train':
        #     gt_size = self.opt['gt_size']
        #     # random crop
        #     img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale,
        #                                         gt_path)
        #     # flip, rotation
        #     img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_flip'],
        #                              self.opt['use_rot'])

        # TODO: color space transform
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_gt, img_lq = totensor([img_gt, img_lq], bgr2rgb=True, float32=True)

        return {
            'lq': img_lq,
            'gt': img_gt,
            'lq_path': lq_path,
            'gt_path': gt_path
        }
Пример #10
0
    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'),
                                          **self.io_backend_opt)

        scale = self.opt['scale']
        gt_size = self.opt['gt_size']
        key = self.keys[index]
        clip_name, frame_name = key.split('/')  # key example: 000/00000000
        center_frame_idx = int(frame_name)

        # determine the neighboring frames
        interval = random.choice(self.interval_list)

        # ensure not exceeding the borders
        start_frame_idx = center_frame_idx - self.num_half_frames * interval
        end_frame_idx = center_frame_idx + self.num_half_frames * interval
        # each clip has 100 frames starting from 0 to 99
        while (start_frame_idx < 0) or (end_frame_idx > 99):
            center_frame_idx = random.randint(0, 99)
            start_frame_idx = (center_frame_idx -
                               self.num_half_frames * interval)
            end_frame_idx = center_frame_idx + self.num_half_frames * interval
        frame_name = f'{center_frame_idx:08d}'
        neighbor_list = list(
            range(center_frame_idx - self.num_half_frames * interval,
                  center_frame_idx + self.num_half_frames * interval + 1,
                  interval))
        # random reverse
        if self.random_reverse and random.random() < 0.5:
            neighbor_list.reverse()

        assert len(neighbor_list) == self.num_frame, (
            f'Wrong length of neighbor list: {len(neighbor_list)}')

        # get the GT frame (as the center frame)
        if self.is_lmdb:
            img_gt_path = f'{clip_name}/{frame_name}'
        else:
            img_gt_path = self.gt_root / clip_name / f'{frame_name}.png'
        img_bytes = self.file_client.get(img_gt_path, 'gt')
        img_gt = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.

        # get the neighboring LQ frames
        img_lqs = []
        for neighbor in neighbor_list:
            if self.is_lmdb:
                img_lq_path = f'{clip_name}/{neighbor:08d}'
            else:
                img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png'
            img_bytes = self.file_client.get(img_lq_path, 'lq')
            img_lq = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.
            img_lqs.append(img_lq)

        # get flows
        if self.flow_root is not None:
            img_flows = []
            # read previous flows
            for i in range(self.num_half_frames, 0, -1):
                if self.is_lmdb:
                    flow_path = f'{clip_name}/{frame_name}_p{i}'
                else:
                    flow_path = (self.flow_root / clip_name /
                                 f'{frame_name}_p{i}.png')
                img_bytes = self.file_client.get(flow_path, 'flow')
                cat_flow = mmcv.imfrombytes(
                    img_bytes, flag='grayscale')  # uint8, [0, 255]
                dx, dy = np.split(cat_flow, 2, axis=0)
                flow = mmcv.video.dequantize_flow(
                    dx, dy, max_val=20,
                    denorm=False)  # we use max_val 20 here.
                img_flows.append(flow)
            # read next flows
            for i in range(1, self.num_half_frames + 1):
                if self.is_lmdb:
                    flow_path = f'{clip_name}/{frame_name}_n{i}'
                else:
                    flow_path = (self.flow_root / clip_name /
                                 f'{frame_name}_n{i}.png')
                img_bytes = self.file_client.get(flow_path, 'flow')
                cat_flow = mmcv.imfrombytes(img_bytes, flag='grayscale')
                dx, dy = np.split(cat_flow, 2, axis=0)
                flow = mmcv.video.dequantize_flow(
                    dx, dy, max_val=20,
                    denorm=False)  # we use max_val 20 here.
                img_flows.append(flow)

            # for random crop, here, img_flows and img_lqs have the same
            # spatial size
            img_lqs.extend(img_flows)

        # randomly crop
        img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale,
                                             img_gt_path)
        if self.flow_root is not None:
            img_lqs, img_flows = img_lqs[:self.num_frame], img_lqs[self.
                                                                   num_frame:]

        # augmentation - flip, rotate
        img_lqs.append(img_gt)
        if self.flow_root is not None:
            img_results, img_flows = augment(img_lqs, self.opt['use_flip'],
                                             self.opt['use_rot'], img_flows)
        else:
            img_results = augment(img_lqs, self.opt['use_flip'],
                                  self.opt['use_rot'])

        img_results = totensor(img_results)
        img_lqs = torch.stack(img_results[0:-1], dim=0)
        img_gt = img_results[-1]

        if self.flow_root is not None:
            img_flows = totensor(img_flows)
            # add the zero center flow
            img_flows.insert(self.num_half_frames,
                             torch.zeros_like(img_flows[0]))
            img_flows = torch.stack(img_flows, dim=0)

        # img_lqs: (t, c, h, w)
        # img_flows: (t, 2, h, w)
        # img_gt: (c, h, w)
        # key: str
        if self.flow_root is not None:
            return {'lq': img_lqs, 'flow': img_flows, 'gt': img_gt, 'key': key}
        else:
            return {'lq': img_lqs, 'gt': img_gt, 'key': key}
Пример #11
0
    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'),
                                          **self.io_backend_opt)

        # random reverse
        if self.random_reverse and random.random() < 0.5:
            self.neighbor_list.reverse()

        scale = self.opt['scale']
        gt_size = self.opt['gt_size']
        key = self.keys[index]
        clip, seq = key.split('/')  # key example: 00001/0001

        # get the GT frame (im4.png)
        if self.is_lmdb:
            img_gt_path = f'{key}/im4'
        else:
            img_gt_path = self.gt_root / clip / seq / 'im4.png'
        img_bytes = self.file_client.get(img_gt_path, 'gt')
        img_gt = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.
        ### get 160
        img_160_path = self.lq_root / clip / seq / 'im4_hr.png'
        img_bytes_160 = self.file_client.get(img_160_path, 'gt')
        img_160 = mmcv.imfrombytes(img_bytes_160).astype(np.float32) / 255.
        # get the neighboring LQ frames
        img_gt_160 = []
        img_gt_160.append(img_gt)
        img_gt_160.append(img_160)
        #         ###visualization
        #         path='/home/wei/exp/EDVR/visualization'
        #         number = 1
        #         ###visualization
        img_lqs = []
        for neighbor in self.neighbor_list:
            if self.is_lmdb:
                img_lq_path = f'{clip}/{seq}/im{neighbor}'
            else:
                img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
            img_bytes = self.file_client.get(img_lq_path, 'lq')
            img_lq = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.
            #  img_con_3d = np.vstack((img_lq, img_3d))
            #             ##visualization
            #             number +=1

            #             visual_lq = img_con_3d[:,:,:3]
            #             visual_lq = Image.fromarray((visual_lq).astype(np.uint8)).convert("RGB")
            #             visual_lq.save(path+'/'+str(number)+'_lq.png')
            #             visual_3d = img_con_3d[:,:,3:]
            #             visual_3d = Image.fromarray((visual_3d).astype(np.uint8)).convert("RGB")
            #             visual_3d.save(path+'/'+str(number)+'_3d.png')
            #             ##visualization
            img_lqs.append(img_lq)

        # randomly crop
        img_gt, img_lqs = paired_random_crop(img_gt_160, img_lqs, gt_size,
                                             scale, img_gt_path)
        img_160_input = img_gt[1]
        img_gt = img_gt[0]
        # augmentation - flip, rotate
        img_lqs.append(img_160_input)
        img_lqs.append(img_gt)
        img_results = augment(img_lqs, self.opt['use_flip'],
                              self.opt['use_rot'])

        img_results = totensor(img_results)
        hr_3d = img_results[-2]
        img_lqs = torch.stack(img_results[0:-2], dim=0)
        img_gt = img_results[-1]

        # img_lqs: (t, c, h, w)
        # img_gt: (c, h, w)
        # key: str
        return {'lq': img_lqs, 'gt': img_gt, 'hr_3d': hr_3d, 'key': key}
Пример #12
0
    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'),
                                          **self.io_backend_opt)

        # random reverse
        if self.random_reverse and random.random() < 0.5:
            self.neighbor_list.reverse()

        scale = self.opt['scale']
        gt_size = self.opt['gt_size']
        key = self.keys[index]
        clip, seq = key.split('/')  # key example: 00001/0001

        # get the GT frame (im4.png)
        if self.is_lmdb:
            img_gt_path = f'{key}/im4'
        else:
            img_gt_path = self.gt_root / clip / seq / 'im4.png'
        img_bytes = self.file_client.get(img_gt_path, 'gt')
        img_gt = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.

        # get the neighboring LQ frames
        img_lqs = []
        for neighbor in self.neighbor_list:
            if self.is_lmdb:
                img_lq_path = f'{clip}/{seq}/im{neighbor}'
            else:
                img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
            img_bytes = self.file_client.get(img_lq_path, 'lq')
            img_lq = mmcv.imfrombytes(img_bytes).astype(np.float32) / 255.
            img_lqs.append(img_lq)

        # randomly crop
        img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale,
                                             img_gt_path)

        # augmentation - flip, rotate
        img_lqs.append(img_gt)
        img_results = augment(img_lqs, self.opt['use_flip'],
                              self.opt['use_rot'])

        img_results = totensor(img_results)
        img_lqs = torch.stack(img_results[0:-1], dim=0)
        img_gt = img_results[-1]

        # img_lqs: (t, c, h, w)
        # img_gt: (c, h, w)
        # key: str
        ### get 18
        #         ztm = np.load(path_flow,allow_pickle=True)
        #         result_7 = []
        #         for test in ztm:
        #             test = np.transpose(test, [2,1,0])
        #             width = test.shape[1]
        #             height = test.shape[2]
        #             ndarray=np.pad(test,((0,0),(1,1),(1,1)),'constant', constant_values=0)
        #             result=[]
        #             for i in range(0,3):
        #                 for j in range(0,3):
        #                     result.append(ndarray[:,i:i+448,j:j+448])

        #             result = np.array(result).reshape(18,448,448)
        #             #result = np.repeat(result,8,axis=0)
        #             result_7.append(np.array(result))
        #         save_path = path_flow.replace('flow.npy','flow_7.npy')
        #         np.save(save_path,np.array(result_7))
        ### get18
        #return np.array(result_7)
        return {'lq': img_lqs, 'gt': img_gt, 'key': key}
Пример #13
0
    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'),
                                          **self.io_backend_opt)

        scale = self.opt['scale']
        lq_map_type = self.opt['lq_map_type']
        gt_map_type = self.opt['gt_map_type']

        crop_scale = self.opt.get('crop_scale', None)

        # Load gt and lq images. Dimension order: HWC; channel order: RGGB;
        # HDR image range: [0, +inf], float32.
        gt_path = self.paths[index]['gt_path']
        lq_path = self.paths[index]['lq_path']
        psf_path = self.paths[index]['psf_path']
        img_gt = self.file_client.get(gt_path)
        img_lq = self.file_client.get(lq_path)
        psf_code = self.file_client.get(psf_path)

        # tone mapping
        img_lq = self._tonemap(img_lq, type=lq_map_type)
        img_gt = self._tonemap(img_gt, type=gt_map_type)

        # expand dimension
        img_gt = self._expand_dim(img_gt)
        img_lq = self._expand_dim(img_lq)

        # Rescale for random crop
        if crop_scale != None:
            h, w, _ = img_lq.shape
            img_lq = cv2.resize(img_lq,
                                (int(w * crop_scale), int(h * crop_scale)),
                                interpolation=cv2.INTER_LINEAR)
            img_gt = cv2.resize(img_gt,
                                (int(w * crop_scale), int(h * crop_scale)),
                                interpolation=cv2.INTER_LINEAR)

        # augmentation
        if self.opt['phase'] == 'train':
            gt_size = self.opt['gt_size']
            # random crop
            img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale,
                                                gt_path)
            # flip, rotation
            img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_flip'],
                                     self.opt['use_rot'])

        # TODO: color space transform
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_gt, img_lq = totensor([img_gt, img_lq],
                                  bgr2rgb=False,
                                  float32=True)
        psf_code = torch.from_numpy(psf_code)[..., None, None]

        return {
            'lq': img_lq,
            'gt': img_gt,
            'psf_code': psf_code,
            'lq_path': lq_path,
            'gt_path': gt_path,
            'psf_path': psf_path,
        }