Пример #1
0
def main():
    # make environment
    t1 = time.time()
    pot_region = (2 / np.sqrt(3), 2 / np.sqrt(3), 2 / np.sqrt(3))
    radius = np.sqrt(pot_region[0]**2 + pot_region[1]**2 + pot_region[2]**2)
    region = (radius, radius, radius)
    nr = 201
    gridpx = 200
    gridpy = 200
    gridpz = 200
    x, y, z = grid(gridpx, gridpy, gridpz, region)
    xx, yy, zz = np.meshgrid(x, y, z)

    #make mesh

    #linear mesh
    #r =np.linspace(0.0001,region,nr)

    #log mesh
    #a = np.log(2) / (nr - 1)
    a = 0.03
    b = radius / (np.e**(a * (nr - 1)) - 1)
    rofi = np.array([b * (np.e**(a * i) - 1) for i in range(nr)])

    # make potential
    V = makepotential(xx,
                      yy,
                      zz,
                      pot_region,
                      pottype="cubic",
                      potbottom=-1,
                      potshow_f=False)

    # surface integral
    V_radial = surfaceintegral(x,
                               y,
                               z,
                               rofi,
                               V,
                               method="lebedev_py",
                               potshow_f=False)
    vofi = np.array(V_radial)  # select method of surface integral
    """
    #test 20191029
    V_test = np.zeros(nr,dtype=np.float64)
    for i in range(nr):
        ri = rofi[i]
        if ri < pot_region[0]:
            V_test[i] = -1
        elif ri >= pot_region[0] and ri < pot_region[0] * np.sqrt(2) :
            V_test[i] = -1 * ( 1 - 12 * np.pi * ri * ( ri - 0.5 * radius )/(4 * np.pi * ri**2))
        elif ri >= pot_region[0] * np.sqrt(2) and ri <=radius:
            V_test[i] = -1 * ( ri - 0.5 * np.sqrt(3) * radius ) * ( 2 - 3 * np.sqrt(2) * ( np.sqrt(2) - 1 ) ) / ( ri**2 * (np.sqrt(2) - np.sqrt(3))**2)

    #plt.plot(rofi,V_test,marker=".")
    #plt.show()

    V_radial = V_test
    vofi = V_test
    """

    # make basis

    node_open = 1
    node_close = 2
    node = node_open + node_close
    LMAX = 3
    nstates = node * LMAX**2

    all_basis = []

    for lvalsh in range(LMAX):
        l_basis = []
        # for open channel
        val = 1.
        slo = 0.
        for no in range(node_open):
            basis = Basis(nr)
            emin = -10.
            emax = 100.
            basis.make_basis(a, b, emin, emax, lvalsh, no, nr, rofi, slo, vofi,
                             val)
            l_basis.append(basis)

        # for close channel
        val = 0.
        slo = -1.
        for nc in range(node_close):
            basis = Basis(nr)
            emin = -10.
            emax = 100.
            basis.make_basis(a, b, emin, emax, lvalsh, nc, nr, rofi, slo, vofi,
                             val)
            l_basis.append(basis)

        all_basis.append(l_basis)

    with open("wavefunc_2.dat", mode="w") as fw_w:
        fw_w.write("#r,   l, node, open or close = ")
        for l_basis in all_basis:
            for nyu_basis in l_basis:
                fw_w.write(str(nyu_basis.l))
                fw_w.write(str(nyu_basis.node))
                if nyu_basis.open:
                    fw_w.write("open")
                else:
                    fw_w.write("close")
                fw_w.write("    ")
        fw_w.write("\n")

        for i in range(nr):
            fw_w.write("{:>13.8f}".format(rofi[i]))
            for l_basis in all_basis:
                for nyu_basis in l_basis:
                    fw_w.write("{:>13.8f}".format(nyu_basis.g[i]))
            fw_w.write("\n")

    Smat = np.zeros((LMAX, LMAX, node, node), dtype=np.float64)
    hsmat = np.zeros((LMAX, LMAX, node, node), dtype=np.float64)
    lmat = np.zeros((LMAX, LMAX, node, node), dtype=np.float64)
    qmat = np.zeros((LMAX, LMAX, node, node), dtype=np.float64)
    """
    for l1 in range (LMAX):
        for n1 in range (node_open + node_close):
            print("l1  = ",l1,"n1 = ",n1,all_basis[l1][n1].val,all_basis[l1][n1].g[nr-1])
    sys.exit()
    """

    for l1 in range(LMAX):
        for l2 in range(LMAX):
            if l1 != l2:
                continue
            for n1 in range(node):
                for n2 in range(node):
                    if all_basis[l1][n1].l != l1 or all_basis[l2][n2].l != l2:
                        print("error: L is differnt")
                        sys.exit()
                    Smat[l1][l2][n1][n2] = integrate(
                        all_basis[l1][n1].g[:nr] * all_basis[l2][n2].g[:nr],
                        rofi, nr)
                    hsmat[l1][l2][n1][
                        n2] = Smat[l1][l2][n1][n2] * all_basis[l2][n2].e
                    lmat[l1][l2][n1][
                        n2] = all_basis[l1][n1].val * all_basis[l2][n2].slo
                    qmat[l1][l2][n1][
                        n2] = all_basis[l1][n1].val * all_basis[l2][n2].val
    print("\nSmat")
    print(Smat)
    print("\nhsmat")
    print(hsmat)
    print("\nlmat")
    print(lmat)
    print("\nqmat")
    print(qmat)

    hs_L = np.zeros((LMAX, LMAX, node, node))
    """
    for l1 in range(LMAX):
        for n1 in range(node):
            for l2 in range(LMAX):
                for n2 in range(node):
                    print("{:>8.4f}".format(lmat[l1][l2][n1][n2]),end="")
            print("")
    print("")
    """
    print("hs_L")
    for l1 in range(LMAX):
        for n1 in range(node):
            for l2 in range(LMAX):
                for n2 in range(node):
                    hs_L[l1][l2][n1][
                        n2] = hsmat[l1][l2][n1][n2] + lmat[l1][l2][n1][n2]
                    print("{:>8.4f}".format(hs_L[l1][l2][n1][n2]), end="")
            print("")

    #make not spherical potential
    my_radial_interfunc = interpolate.interp1d(rofi, V_radial)

    V_ang = np.where(
        np.sqrt(xx * xx + yy * yy + zz * zz) < rofi[-1],
        V - my_radial_interfunc(np.sqrt(xx**2 + yy**2 + zz**2)), 0.)
    """
    for i in range(gridpx):
        for j in range(gridpy):
            for k in range(gridpz):
                print(V_ang[i][j][k],end="  ")
            print("")
        print("\n")
    sys.exit()
    """

    #WARING!!!!!!!!!!!!!!!!!!!!!!
    """
    Fujikata rewrote ~/.local/lib/python3.6/site-packages/scipy/interpolate/interpolate.py line 690~702
    To avoid exit with error "A value in x_new is below the interpolation range."
    """
    #!!!!!!!!!!!!!!!!!!!!!!!!!!!
    """
    with open ("V_ang.dat",mode = "w") as fw_a:
        for i in range(len(V_ang)):
            fw_a.write("{:>13.8f}".format(xx[50][i][50]))
            fw_a.write("{:>13.8f}\n".format(V_ang[i][50][50]))
    """

    #mayavi.mlab.plot3d(xx,yy,V_ang)
    #    mlab.contour3d(V_ang,color = (1,1,1),opacity = 0.1)
    #    obj = mlab.volume_slice(V_ang)
    #    mlab.show()

    umat_av = np.zeros((node, node, LMAX, LMAX, 2 * LMAX + 1, 2 * LMAX + 1),
                       dtype=np.complex64)
    gridstart = 50
    gridend = 60
    gridrange = gridend - gridstart + 1
    for ngrid in range(gridstart, gridend + 1):
        t1 = time.time()
        fw_u = open("umat_grid" + str(ngrid) + ".dat", mode="w")

        umat = np.zeros((node, node, LMAX, LMAX, 2 * LMAX + 1, 2 * LMAX + 1),
                        dtype=np.complex64)
        my_V_ang_inter_func = RegularGridInterpolator((x, y, z), V_ang)

        igridpx = ngrid
        igridpy = ngrid
        igridpz = ngrid

        ix, iy, iz = grid(igridpx, igridpy, igridpz, region)
        ixx, iyy, izz = np.meshgrid(ix, iy, iz)

        V_ang_i = my_V_ang_inter_func((ixx, iyy, izz))

        #mlab.contour3d(V_ang_i,color = (1,1,1),opacity = 0.1)
        #obj = mlab.volume_slice(V_ang_i)
        #mlab.show()

        dis = np.sqrt(ixx**2 + iyy**2 + izz**2)
        dis2 = ixx**2 + iyy**2 + izz**2
        theta = np.where(dis != 0., np.arccos(izz / dis), 0.)
        phi = np.where(
            iyy**2 + ixx**2 != 0,
            np.where(iyy >= 0, np.arccos(ixx / np.sqrt(ixx**2 + iyy**2)),
                     np.pi + np.arccos(ixx / np.sqrt(ixx**2 + iyy**2))), 0.)
        #phi = np.where( iyy != 0. , phi, 0.)
        #phi = np.where(iyy > 0, phi,-phi)
        #    region_t = np.where(dis < rofi[-1],1,0)
        sph_harm_mat = np.zeros(
            (LMAX, 2 * LMAX + 1, igridpx, igridpy, igridpz),
            dtype=np.complex64)
        for l1 in range(LMAX):
            for m1 in range(-l1, l1 + 1):
                sph_harm_mat[l1][m1] = np.where(dis != 0.,
                                                sph_harm(m1, l1, phi, theta),
                                                0.)
        g_ln_mat = np.zeros((node, LMAX, igridpx, igridpy, igridpz),
                            dtype=np.float64)
        for n1 in range(node):
            for l1 in range(LMAX):
                my_radial_g_inter_func = interpolate.interp1d(
                    rofi, all_basis[l1][n1].g[:nr])
                g_ln_mat[n1][l1] = my_radial_g_inter_func(
                    np.sqrt(ixx**2 + iyy**2 + izz**2))

        for n1 in range(node):
            for n2 in range(node):
                for l1 in range(LMAX):
                    for l2 in range(LMAX):
                        if all_basis[l1][n1].l != l1 or all_basis[l2][
                                n2].l != l2:
                            print("error: L is differnt")
                            sys.exit()
                        # to avoid nan in region where it can not interpolate ie: dis > rofi
                        g_V_g = np.where(
                            dis < rofi[-1],
                            g_ln_mat[n1][l1] * V_ang_i * g_ln_mat[n2][l2], 0.)
                        for m1 in range(-l1, l1 + 1):
                            for m2 in range(-l2, l2 + 1):
                                #print("n1 = {} n2 = {} l1 = {} l2 = {} m1 = {} m2 = {}".format(n1,n2,l1,l2,m1,m2))
                                umat[n1][n2][l1][l2][m1][m2] = np.sum(
                                    np.where(
                                        dis2 != 0.,
                                        sph_harm_mat[l1][m1].conjugate() *
                                        g_V_g * sph_harm_mat[l2][m2] / dis2,
                                        0.)) * (2 * region[0] * 2 * region[1] *
                                                2 * region[2]) / (igridpx *
                                                                  igridpy *
                                                                  igridpz)
                                #print(umat[n1][n2][l1][l2][m1][m2])
        count = 0
        for l1 in range(LMAX):
            for l2 in range(LMAX):
                for m1 in range(-l1, l1 + 1):
                    for m2 in range(-l2, l2 + 1):
                        for n1 in range(node):
                            for n2 in range(node):
                                fw_u.write(str(count))
                                fw_u.write("{:>15.8f}{:>15.8f}\n".format(
                                    umat[n1][n2][l1][l2][m1][m2].real,
                                    umat[n1][n2][l1][l2][m1][m2].imag))
                                count += 1

        umat_av += umat

        fw_u.close()

        t2 = time.time()
        print("grid = ", ngrid, "time = ", t2 - t1)

    umat_av /= gridrange
    count = 0
    fw_u_av = open("umat_grid_av" + str(gridstart) + "_" + str(gridend) +
                   ".dat",
                   mode="w")
    for l1 in range(LMAX):
        for l2 in range(LMAX):
            for m1 in range(-l1, l1 + 1):
                for m2 in range(-l2, l2 + 1):
                    for n1 in range(node):
                        for n2 in range(node):
                            fw_u_av.write(str(count))
                            fw_u_av.write("{:>15.8f}{:>15.8f}\n".format(
                                umat_av[n1][n2][l1][l2][m1][m2].real,
                                umat_av[n1][n2][l1][l2][m1][m2].imag))
                            count += 1
    fw_u_av.close()
    ham_mat = np.zeros((nstates * nstates), dtype=np.float64)
    qmetric_mat = np.zeros((nstates * nstates), dtype=np.float64)
    for l1 in range(LMAX):
        for m1 in range(-l1, l1 + 1):
            for n1 in range(node):
                for l2 in range(LMAX):
                    for m2 in range(-l2, l2 + 1):
                        for n2 in range(node):
                            if l1 == l2 and m1 == m2:
                                ham_mat[l1**2 * node * LMAX**2 * node +
                                        (l1 + m1) * node * LMAX**2 * node +
                                        n1 * LMAX**2 * node + l2**2 * node +
                                        (l2 + m2) * node +
                                        n2] += hs_L[l1][l2][n1][n2]
                                qmetric_mat[l1**2 * node * LMAX**2 * node +
                                            (l1 + m1) * node * LMAX**2 * node +
                                            n1 * LMAX**2 * node +
                                            l2**2 * node + (l2 + m2) * node +
                                            n2] = qmat[l1][l2][n1][n2]
                            ham_mat[l1**2 * node * LMAX**2 * node +
                                    (l1 + m1) * node * LMAX**2 * node +
                                    n1 * LMAX**2 * node + l2**2 * node +
                                    (l2 + m2) * node +
                                    n2] += umat_av[n1][n2][l1][l2][m1][m2].real

    lambda_mat = np.zeros(nstates * nstates, dtype=np.float64)
    alphalong = np.zeros(nstates)
    betalong = np.zeros(nstates)
    revec = np.zeros(nstates * nstates)

    for e_num in range(1, 2):
        E = e_num * 10
        lambda_mat = np.zeros(nstates * nstates, dtype=np.float64)
        lambda_mat -= ham_mat
        """
        for i in range(nstates):
            lambda_mat[i + i * nstates] += E
        """
        count = 0
        fw_lam = open("lambda.dat", mode="w")

        for l1 in range(LMAX):
            for m1 in range(-l1, l1 + 1):
                for n1 in range(node):
                    for l2 in range(LMAX):
                        for m2 in range(-l2, l2 + 1):
                            for n2 in range(node):
                                if l1 == l2 and m1 == m2:
                                    lambda_mat[l1**2 * node * LMAX**2 * node +
                                               (l1 + m1) * node * LMAX**2 *
                                               node + n1 * LMAX**2 * node +
                                               l2**2 * node +
                                               (l2 + m2) * node +
                                               n2] += Smat[l1][l2][n1][n2] * E
                                fw_lam.write(str(count))
                                fw_lam.write("{:>15.8f}\n".format(
                                    lambda_mat[l1**2 * node * LMAX**2 * node +
                                               (l1 + m1) * node * LMAX**2 *
                                               node + n1 * LMAX**2 * node +
                                               l2**2 * node +
                                               (l2 + m2) * node + n2]))
                                count += 1

        info = solve_genev(nstates, lambda_mat, qmetric_mat, alphalong,
                           betalong, revec)

        print("info = ", info)
        print("alphalong")
        print(alphalong)
        print("betalong")
        print(betalong)
        #print(revec)

        k = 0
        jk = np.zeros(nstates, dtype=np.int32)
        for i in range(nstates):
            if betalong[i] != 0.:
                jk[k] = i
                k += 1

        fw_revec = open("revec.dat", mode="w")
        print("revec")
        for j in range(nstates):
            fw_revec.write("{:>4}".format(j))
            for i in range(LMAX**2):
                fw_revec.write("{:>13.8f}".format(revec[j + jk[i] * nstates]))
                print("{:>11.6f}".format(revec[j + jk[i] * nstates]), end="")
            print("")
            fw_revec.write("\n")
        print("")
Пример #2
0
def main():
    # make environment
    pot_region = (2 / np.sqrt(3), 2 / np.sqrt(3), 2 / np.sqrt(3))
    radius = np.sqrt(pot_region[0]**2 + pot_region[1]**2 + pot_region[2]**2)
    region = (radius, radius, radius)
    nr = 201
    gridpx = 200
    gridpy = 200
    gridpz = 200
    x, y, z = grid(gridpx, gridpy, gridpz, region)
    xx, yy, zz = np.meshgrid(x, y, z)

    #make mesh

    #linear mesh
    #r =np.linspace(0.0001,region,nr)

    #log mesh
    a = np.log(2) / (nr - 1)
    b = radius / (np.e**(a * (nr - 1)) - 1)
    rofi = np.array([b * (np.e**(a * i) - 1) for i in range(nr)])

    # make potential
    V = makepotential(xx,
                      yy,
                      zz,
                      pot_region,
                      pottype="cubic",
                      potbottom=-1,
                      potshow_f=False)

    # surface integral
    V_radial = surfaceintegral(x,
                               y,
                               z,
                               rofi,
                               V,
                               method="lebedev_py",
                               potshow_f=False)
    vofi = np.array(V_radial)  # select method of surface integral

    # make basis

    node_open = 1
    node_close = 2
    LMAX = 10

    all_basis = []

    for lvalsh in range(LMAX):
        l_basis = []
        # for open channel
        val = 1.
        slo = 0.
        for node in range(node_open):
            basis = Basis(nr)
            emin = -10.
            emax = 100.
            basis.make_basis(a, b, emin, emax, lvalsh, node, nr, rofi, slo,
                             vofi, val)
            l_basis.append(basis)

        # for close channel
        val = 0.
        slo = -1.
        for node in range(node_close):
            basis = Basis(nr)
            emin = -10.
            emax = 100.
            basis.make_basis(a, b, emin, emax, lvalsh, node, nr, rofi, slo,
                             vofi, val)
            l_basis.append(basis)

        all_basis.append(l_basis)

    with open("wavefunc.dat", mode="w") as fw_w:
        fw_w.write("#r,   l, node, open or close = ")
        for l_basis in all_basis:
            for nyu_basis in l_basis:
                fw_w.write(str(nyu_basis.l))
                fw_w.write(str(nyu_basis.node))
                if nyu_basis.open:
                    fw_w.write("open")
                else:
                    fw_w.write("close")
                fw_w.write("    ")
        fw_w.write("\n")

        for i in range(nr):
            fw_w.write("{:>13.8f}".format(rofi[i]))
            for l_basis in all_basis:
                for nyu_basis in l_basis:
                    fw_w.write("{:>13.8f}".format(nyu_basis.g[i]))
            fw_w.write("\n")

    hsmat = np.zeros(
        (LMAX, LMAX, node_open + node_close, node_open + node_close),
        dtype=np.float64)
    lmat = np.zeros(
        (LMAX, LMAX, node_open + node_close, node_open + node_close),
        dtype=np.float64)
    qmat = np.zeros(
        (LMAX, LMAX, node_open + node_close, node_open + node_close),
        dtype=np.float64)

    for l1 in range(LMAX):
        for l2 in range(LMAX):
            if l1 != l2:
                continue
            for n1 in range(node_open + node_close):
                for n2 in range(node_open + node_close):
                    if all_basis[l1][n1].l != l1 or all_basis[l2][n2].l != l2:
                        print("error: L is differnt")
                        sys.exit()
                    hsmat[l1][l2][n1][n2] = integrate(
                        all_basis[l1][n1].g[:nr] * all_basis[l2][n2].g[:nr],
                        rofi, nr) * all_basis[l1][n1].e
                    lmat[l1][l2][n1][
                        n2] = all_basis[l1][n1].val * all_basis[l2][n2].slo
                    qmat[l1][l2][n1][
                        n2] = all_basis[l1][n1].val * all_basis[l2][n2].val
    print("\nhsmat")
    print(hsmat)
    print("\nlmat")
    print(lmat)
    print("\nqmat")
    print(qmat)

    #make not spherical potential
    my_radial_interfunc = interpolate.interp1d(rofi, V_radial)

    #V_ang = np.where(np.sqrt(xx * xx + yy * yy + zz * zz) < rofi[-1] , V - my_radial_interfunc(np.sqrt(xx * xx + yy * yy + zz * zz)),0. )
    #my_V_ang_inter_func = RegularGridInterpolator((x, y, z), V_ang)
    my_V_inter_func = RegularGridInterpolator((x, y, z), V)

    #WARING!!!!!!!!!!!!!!!!!!!!!!
    """
    Fujikata rewrote ~/.local/lib/python3.6/site-packages/scipy/interpolate/interpolate.py line 690~702
    To avoid exit with error "A value in x_new is below the interpolation range."
    """
    #!!!!!!!!!!!!!!!!!!!!!!!!!!!

    #mayavi.mlab.plot3d(xx,yy,V_ang)
    #    mlab.contour3d(V_ang,color = (1,1,1),opacity = 0.1)
    #    obj = mlab.volume_slice(V_ang)
    #    mlab.show()

    #for V_L
    fw_umat_vl = open("umat_vl_all.dat", mode="w")
    for LMAX_k in range(10, 13):
        fw_umat_vl_2 = open("umat_vl_L" + str(LMAX_k) + ".dat", mode="w")
        t1 = time.time()
        umat = np.zeros((node_open + node_close, node_open + node_close, LMAX,
                         LMAX, 2 * LMAX + 1, 2 * LMAX + 1),
                        dtype=np.complex64)
        #LMAX_k = 3
        fw_umat_vl.write(str(LMAX_k))
        igridnr = 201
        leb_r = np.linspace(0, radius, igridnr)
        lebedev_num = lebedev_num_list[-8]

        V_L = np.zeros((LMAX_k, 2 * LMAX_k + 1, igridnr), dtype=np.complex64)
        leb_x = np.zeros(lebedev_num)
        leb_y = np.zeros(lebedev_num)
        leb_z = np.zeros(lebedev_num)
        leb_w = np.zeros(lebedev_num)

        lebedev(lebedev_num, leb_x, leb_y, leb_z, leb_w)

        theta = np.arccos(leb_z)
        phi = np.where(
            leb_x**2 + leb_y**2 != 0.,
            np.where(leb_y >= 0,
                     np.arccos(leb_x / np.sqrt(leb_x**2 + leb_y**2)),
                     np.pi + np.arccos(leb_x / np.sqrt(leb_x**2 + leb_y**2))),
            0.)
        for i in range(igridnr):
            V_leb_r = my_V_inter_func(
                np.array([leb_x, leb_y, leb_z]).T * leb_r[i]) * leb_w
            for k in range(LMAX_k):
                for q in range(-k, k + 1):
                    V_L[k][q][i] = 4 * np.pi * np.sum(
                        V_leb_r * sph_harm(q, k, phi, theta).conjugate())
        """
        for k in range(LMAX_k):
            for q in range(-k,k+1):
                print("k = ",k,"q = ", q)
                plt.plot(leb_r,V_L[k][q].real,marker=".")
                plt.show()
        sys.exit()
        """

        g_ln = np.zeros((node_open + node_close, LMAX, igridnr),
                        dtype=np.float64)
        for n1 in range(node_open + node_close):
            for l1 in range(LMAX):
                my_radial_g_inter_func = interpolate.interp1d(
                    rofi, all_basis[l1][n1].g[:nr])
                g_ln[n1][l1] = my_radial_g_inter_func(leb_r)
        C_kq = np.zeros(
            (LMAX, LMAX, 2 * LMAX + 1, 2 * LMAX + 1, LMAX_k, 2 * LMAX_k + 1),
            dtype=np.float64)
        for l1 in range(LMAX):
            for l2 in range(LMAX):
                for m1 in range(-l1, l1 + 1):
                    for m2 in range(-l2, l2 + 1):
                        for k in range(1, LMAX_k):
                            for q in range(-k, k + 1):
                                C_kq[l1][l2][m1][m2][k][q] = (-1)**(
                                    -m1) * np.sqrt(
                                        (2 * l1 + 1) *
                                        (2 * l2 + 1)) * Wigner3j(
                                            l1, 0, k, 0, l2,
                                            0).doit() * Wigner3j(
                                                l1, -m1, k, q, l2, m2).doit()
                                #print(l1,l2,m1,m2,k,q,C_kq[l1][l2][m1][m2][k][q])
        count = 0
        for l1 in range(LMAX):
            for l2 in range(LMAX):
                for m1 in range(-l1, l1 + 1):
                    for m2 in range(-l2, l2 + 1):
                        for n1 in range(node_open + node_close):
                            for n2 in range(node_open + node_close):
                                for k in range(1, LMAX_k):
                                    for q in range(-k, k + 1):
                                        umat[n1][n2][l1][l2][m1][m2] += simps(
                                            g_ln[n1][l1] * V_L[k][q] *
                                            g_ln[n2][l2], leb_r) * C_kq[l1][
                                                l2][m1][m2][k][q] * np.sqrt(
                                                    (2 * k + 1) / (4 * np.pi))
                                fw_umat_vl.write("{:>15.8f}".format(
                                    umat[n1][n2][l1][l2][m1][m2].real))
                                fw_umat_vl_2.write("{:>15.8f}".format(count))
                                fw_umat_vl_2.write("{:>15.8f}\n".format(
                                    umat[n1][n2][l1][l2][m1][m2].real))
                                count += 1

        t2 = time.time()
        print("LMAX = ", LMAX_k, " time = ", t2 - t1)
        fw_umat_vl_2.close()

        fw_umat_vl.write("\n")
    fw_umat_vl.close()
Пример #3
0
def main():
    # make environment
    pot_region = (2 / np.sqrt(3), 2 / np.sqrt(3), 2 / np.sqrt(3))
    radius = np.sqrt(pot_region[0]**2 + pot_region[1]**2 + pot_region[2]**2)
    region = (radius, radius, radius)
    nr = 201
    gridpx = 200
    gridpy = 200
    gridpz = 200
    x, y, z = grid(gridpx, gridpy, gridpz, region)
    xx, yy, zz = np.meshgrid(x, y, z)

    #make mesh

    #linear mesh
    #r =np.linspace(0.0001,region,nr)

    #log mesh
    a = np.log(2) / (nr - 1)
    b = radius / (np.e**(a * (nr - 1)) - 1)
    rofi = np.array([b * (np.e**(a * i) - 1) for i in range(nr)])

    # make potential
    V = makepotential(xx,
                      yy,
                      zz,
                      pot_region,
                      pottype="cubic",
                      potbottom=-1,
                      potshow_f=False)

    # surface integral
    V_radial = surfaceintegral(x,
                               y,
                               z,
                               rofi,
                               V,
                               method="lebedev_py",
                               potshow_f=False)
    vofi = np.array(V_radial)  # select method of surface integral

    # make basis

    node_open = 1
    node_close = 2
    LMAX = 4

    all_basis = []

    for lvalsh in range(LMAX):
        l_basis = []
        # for open channel
        val = 1.
        slo = 0.
        for node in range(node_open):
            basis = Basis(nr)
            emin = -10.
            emax = 100.
            basis.make_basis(a, b, emin, emax, lvalsh, node, nr, rofi, slo,
                             vofi, val)
            l_basis.append(basis)

        # for close channel
        val = 0.
        slo = -1.
        for node in range(node_close):
            basis = Basis(nr)
            emin = -10.
            emax = 100.
            basis.make_basis(a, b, emin, emax, lvalsh, node, nr, rofi, slo,
                             vofi, val)
            l_basis.append(basis)

        all_basis.append(l_basis)

    with open("wavefunc.dat", mode="w") as fw_w:
        fw_w.write("#r,   l, node, open or close = ")
        for l_basis in all_basis:
            for nyu_basis in l_basis:
                fw_w.write(str(nyu_basis.l))
                fw_w.write(str(nyu_basis.node))
                if nyu_basis.open:
                    fw_w.write("open")
                else:
                    fw_w.write("close")
                fw_w.write("    ")
        fw_w.write("\n")

        for i in range(nr):
            fw_w.write("{:>13.8f}".format(rofi[i]))
            for l_basis in all_basis:
                for nyu_basis in l_basis:
                    fw_w.write("{:>13.8f}".format(nyu_basis.g[i]))
            fw_w.write("\n")

    hsmat = np.zeros(
        (LMAX, LMAX, node_open + node_close, node_open + node_close),
        dtype=np.float64)
    lmat = np.zeros(
        (LMAX, LMAX, node_open + node_close, node_open + node_close),
        dtype=np.float64)
    qmat = np.zeros(
        (LMAX, LMAX, node_open + node_close, node_open + node_close),
        dtype=np.float64)

    for l1 in range(LMAX):
        for l2 in range(LMAX):
            if l1 != l2:
                continue
            for n1 in range(node_open + node_close):
                for n2 in range(node_open + node_close):
                    if all_basis[l1][n1].l != l1 or all_basis[l2][n2].l != l2:
                        print("error: L is differnt")
                        sys.exit()
                    hsmat[l1][l2][n1][n2] = integrate(
                        all_basis[l1][n1].g[:nr] * all_basis[l2][n2].g[:nr],
                        rofi, nr) * all_basis[l1][n1].e
                    lmat[l1][l2][n1][
                        n2] = all_basis[l1][n1].val * all_basis[l2][n2].slo
                    qmat[l1][l2][n1][
                        n2] = all_basis[l1][n1].val * all_basis[l2][n2].val
    print("\nhsmat")
    print(hsmat)
    print("\nlmat")
    print(lmat)
    print("\nqmat")
    print(qmat)

    #make not spherical potential
    my_radial_interfunc = interpolate.interp1d(rofi, V_radial)

    V_ang = np.where(
        np.sqrt(xx * xx + yy * yy + zz * zz) < rofi[-1],
        V - my_radial_interfunc(np.sqrt(xx * xx + yy * yy + zz * zz)), 0.)
    """
    for i in range(gridpx):
        for j in range(gridpy):
            for k in range(gridpz):
                print(V_ang[i][j][k],end="  ")
            print("")
        print("\n")
    sys.exit()
    """

    #WARING!!!!!!!!!!!!!!!!!!!!!!
    """
    Fujikata rewrote ~/.local/lib/python3.6/site-packages/scipy/interpolate/interpolate.py line 690~702
    To avoid exit with error "A value in x_new is below the interpolation range."
    """
    #!!!!!!!!!!!!!!!!!!!!!!!!!!!
    """
    with open ("V_ang.dat",mode = "w") as fw_a:
        for i in range(len(V_ang)):
            fw_a.write("{:>13.8f}".format(xx[50][i][50]))
            fw_a.write("{:>13.8f}\n".format(V_ang[i][50][50]))
    """

    #mayavi.mlab.plot3d(xx,yy,V_ang)
    #    mlab.contour3d(V_ang,color = (1,1,1),opacity = 0.1)
    #    obj = mlab.volume_slice(V_ang)
    #    mlab.show()

    fw_grid = open("umat_grid_all.dat", mode="w")
    for ngrid in range(20, 100):
        fw_grid_2 = open("umat_grid" + str(ngrid) + ".dat", mode="w")
        fw_grid.write(str(ngrid) + " ")
        t1 = time.time()

        umat = np.zeros((node_open + node_close, node_open + node_close, LMAX,
                         LMAX, 2 * LMAX + 1, 2 * LMAX + 1),
                        dtype=np.complex64)
        #    umat_t = np.zeros((LMAX,LMAX,2 * LMAX + 1,2 * LMAX + 1,node_open + node_close,node_open + node_close), dtype = np.complex64)

        my_V_ang_inter_func = RegularGridInterpolator((x, y, z), V_ang)

        igridpx = ngrid
        igridpy = ngrid
        igridpz = ngrid

        ix, iy, iz = grid(igridpx, igridpy, igridpz, region)
        ixx, iyy, izz = np.meshgrid(ix, iy, iz)

        V_ang_i = my_V_ang_inter_func((ixx, iyy, izz))

        #mlab.points3d(V_ang_i,scale_factor=0.4)
        #    mlab.contour3d(V_ang_i,color = (1,1,1),opacity = 0.1)
        #    obj = mlab.volume_slice(V_ang_i)
        #mlab.show()

        dis = np.sqrt(ixx**2 + iyy**2 + izz**2)
        dis2 = ixx**2 + iyy**2 + izz**2
        theta = np.where(dis != 0., np.arccos(izz / dis), 0.)
        phi = np.where(
            iyy**2 + ixx**2 != 0,
            np.where(iyy >= 0, np.arccos(ixx / np.sqrt(ixx**2 + iyy**2)),
                     np.pi + np.arccos(ixx / np.sqrt(ixx**2 + iyy**2))), 0.)
        #    region_t = np.where(dis < rofi[-1],1,0)
        sph_harm_mat = np.zeros(
            (LMAX, 2 * LMAX + 1, igridpx, igridpy, igridpz),
            dtype=np.complex64)
        for l1 in range(LMAX):
            for m1 in range(-l1, l1 + 1):
                sph_harm_mat[l1][m1] = np.where(dis != 0.,
                                                sph_harm(m1, l1, phi, theta),
                                                0.)
        g_ln_mat = np.zeros(
            (node_open + node_close, LMAX, igridpx, igridpy, igridpz),
            dtype=np.float64)
        for n1 in range(node_open + node_close):
            for l1 in range(LMAX):
                my_radial_g_inter_func = interpolate.interp1d(
                    rofi, all_basis[l1][n1].g[:nr])
                g_ln_mat[n1][l1] = my_radial_g_inter_func(
                    np.sqrt(ixx**2 + iyy**2 + izz**2))

        for n1 in range(node_open + node_close):
            for n2 in range(node_open + node_close):
                for l1 in range(LMAX):
                    for l2 in range(LMAX):
                        if all_basis[l1][n1].l != l1 or all_basis[l2][
                                n2].l != l2:
                            print("error: L is differnt")
                            sys.exit()
                        # to avoid nan in region where it can not interpolate ie: dis > rofi
                        g_V_g = np.where(
                            dis < rofi[-1],
                            g_ln_mat[n1][l1] * V_ang_i * g_ln_mat[n2][l2], 0.)
                        for m1 in range(-l1, l1 + 1):
                            for m2 in range(-l2, l2 + 1):
                                #print("n1 = {} n2 = {} l1 = {} l2 = {} m1 = {} m2 = {}".format(n1,n2,l1,l2,m1,m2))
                                umat[n1][n2][l1][l2][m1][m2] = np.sum(
                                    np.where(
                                        dis2 != 0.,
                                        sph_harm_mat[l1][m1].conjugate() *
                                        g_V_g * sph_harm_mat[l2][m2] / dis2,
                                        0.)) * (2 * region[0] * 2 * region[1] *
                                                2 * region[2]) / (igridpx *
                                                                  igridpy *
                                                                  igridpz)
                                fw_grid.write("{:>13.8f}".format(
                                    umat[n1][n2][l1][l2][m1][m2].real))
        count = 0
        for l1 in range(LMAX):
            for l2 in range(LMAX):
                for m1 in range(-l1, l1 + 1):
                    for m2 in range(-l2, l2 + 1):
                        for n1 in range(node_open + node_close):
                            for n2 in range(node_open + node_close):
                                fw_grid_2.write(str(count))
                                fw_grid_2.write("{:>15.8f}{:>15.8f}\n".format(
                                    umat[n1][n2][l1][l2][m1][m2].real,
                                    umat[n1][n2][l1][l2][m1][m2].imag))
                                count += 1

        t2 = time.time()
        fw_grid.write("\n")
        print("grid = ", ngrid, "time = ", t2 - t1)
    fw_grid.close()
Пример #4
0
def main():
    # make environment
    t1 = time.time()
    pot_region = (2 / np.sqrt(3), 2 / np.sqrt(3), 2 / np.sqrt(3))
    radius = np.sqrt(pot_region[0]**2 + pot_region[1]**2 + pot_region[2]**2)
    region = (radius, radius, radius)
    nr = 201
    gridpx = 131
    gridpy = 131
    gridpz = 131
    x, y, z = grid(gridpx, gridpy, gridpz, region)
    xx, yy, zz = np.meshgrid(x, y, z)

    #make mesh

    #linear mesh
    #r =np.linspace(0.0001,region,nr)

    #log mesh
    a = np.log(2) / (nr - 1)
    b = radius / (np.e**(a * (nr - 1)) - 1)
    rofi = np.array([b * (np.e**(a * i) - 1) for i in range(nr)])

    # make potential
    V = makepotential(xx,
                      yy,
                      zz,
                      pot_region,
                      pottype="cubic",
                      potbottom=-1,
                      potshow_f=False)

    # surface integral
    V_radial = surfaceintegral(x,
                               y,
                               z,
                               rofi,
                               V,
                               method="lebedev_py",
                               potshow_f=False)
    vofi = np.array(V_radial)  # select method of surface integral

    # make basis

    node_open = 1
    node_close = 2
    LMAX = 4

    all_basis = []

    for lvalsh in range(LMAX):
        l_basis = []
        # for open channel
        val = 1.
        slo = 0.
        for node in range(node_open):
            basis = Basis(nr)
            emin = -10.
            emax = 100.
            basis.make_basis(a, b, emin, emax, lvalsh, node, nr, rofi, slo,
                             vofi, val)
            l_basis.append(basis)

        # for close channel
        val = 0.
        slo = -1.
        for node in range(node_close):
            basis = Basis(nr)
            emin = -10.
            emax = 100.
            basis.make_basis(a, b, emin, emax, lvalsh, node, nr, rofi, slo,
                             vofi, val)
            l_basis.append(basis)

        all_basis.append(l_basis)

    with open("wavefunc.dat", mode="w") as fw_w:
        fw_w.write("#r,   l, node, open or close = ")
        for l_basis in all_basis:
            for nyu_basis in l_basis:
                fw_w.write(str(nyu_basis.l))
                fw_w.write(str(nyu_basis.node))
                if nyu_basis.open:
                    fw_w.write("open")
                else:
                    fw_w.write("close")
                fw_w.write("    ")
        fw_w.write("\n")

        for i in range(nr):
            fw_w.write("{:>13.8f}".format(rofi[i]))
            for l_basis in all_basis:
                for nyu_basis in l_basis:
                    fw_w.write("{:>13.8f}".format(nyu_basis.g[i]))
            fw_w.write("\n")

    hsmat = np.zeros(
        (LMAX, LMAX, node_open + node_close, node_open + node_close),
        dtype=np.float64)
    lmat = np.zeros(
        (LMAX, LMAX, node_open + node_close, node_open + node_close),
        dtype=np.float64)
    qmat = np.zeros(
        (LMAX, LMAX, node_open + node_close, node_open + node_close),
        dtype=np.float64)

    for l1 in range(LMAX):
        for l2 in range(LMAX):
            if l1 != l2:
                continue
            for n1 in range(node_open + node_close):
                for n2 in range(node_open + node_close):
                    if all_basis[l1][n1].l != l1 or all_basis[l2][n2].l != l2:
                        print("error: L is differnt")
                        sys.exit()
                    hsmat[l1][l2][n1][n2] = integrate(
                        all_basis[l1][n1].g[:nr] * all_basis[l2][n2].g[:nr],
                        rofi, nr) * all_basis[l1][n1].e
                    lmat[l1][l2][n1][
                        n2] = all_basis[l1][n1].val * all_basis[l2][n2].slo
                    qmat[l1][l2][n1][
                        n2] = all_basis[l1][n1].val * all_basis[l2][n2].val
    print("\nhsmat")
    print(hsmat)
    print("\nlmat")
    print(lmat)
    print("\nqmat")
    print(qmat)

    #make not spherical potential
    my_radial_interfunc = interpolate.interp1d(rofi, V_radial)

    V_ang = np.where(
        np.sqrt(xx * xx + yy * yy + zz * zz) < rofi[-1],
        V - my_radial_interfunc(np.sqrt(xx * xx + yy * yy + zz * zz)), 0.)
    """
    for i in range(gridpx):
        for j in range(gridpy):
            for k in range(gridpz):
                print(V_ang[i][j][k],end="  ")
            print("")
        print("\n")
    sys.exit()
    """

    #WARING!!!!!!!!!!!!!!!!!!!!!!
    """
    Fujikata rewrote ~/.local/lib/python3.6/site-packages/scipy/interpolate/interpolate.py line 690~702
    To avoid exit with error "A value in x_new is below the interpolation range."
    """
    #!!!!!!!!!!!!!!!!!!!!!!!!!!!
    """
    with open ("V_ang.dat",mode = "w") as fw_a:
        for i in range(len(V_ang)):
            fw_a.write("{:>13.8f}".format(xx[50][i][50]))
            fw_a.write("{:>13.8f}\n".format(V_ang[i][50][50]))
    """

    #mayavi.mlab.plot3d(xx,yy,V_ang)
    #    mlab.contour3d(V_ang,color = (1,1,1),opacity = 0.1)
    #    obj = mlab.volume_slice(V_ang)
    #    mlab.show()

    umat = np.zeros((node_open + node_close, node_open + node_close, LMAX,
                     LMAX, 2 * LMAX + 1, 2 * LMAX + 1),
                    dtype=np.complex64)
    #    umat_t = np.zeros((LMAX,LMAX,2 * LMAX + 1,2 * LMAX + 1,node_open + node_close,node_open + node_close), dtype = np.complex64)

    #    my_V_ang_inter_func = RegularGridInterpolator((x, y, z), V_ang)

    dis = np.sqrt(xx**2 + yy**2 + zz**2)
    dis2 = xx**2 + yy**2 + zz**2
    theta = np.where(dis != 0., np.arccos(zz / dis), 0.)
    phi = np.where(xx**2 + yy**2 != 0., np.arccos(xx / np.sqrt(xx**2 + yy**2)),
                   0.)
    #    region_t = np.where(dis < rofi[-1],1,0)
    sph_harm_mat = np.zeros((LMAX, 2 * LMAX + 1, gridpx, gridpy, gridpz),
                            dtype=np.complex64)
    for l1 in range(LMAX):
        for m1 in range(-l1, l1 + 1):
            sph_harm_mat[l1][m1] = np.where(dis != 0.,
                                            sph_harm(m1, l1, theta, phi), 0.)
    g_ln_mat = np.zeros((node_open + node_close, LMAX, gridpx, gridpy, gridpz),
                        dtype=np.float64)
    for n1 in range(node_open + node_close):
        for l1 in range(LMAX):
            my_radial_g_inter_func = interpolate.interp1d(
                rofi, all_basis[l1][n1].g[:nr])
            g_ln_mat[n1][l1] = my_radial_g_inter_func(
                np.sqrt(xx**2 + yy**2 + zz**2))

    for n1 in range(node_open + node_close):
        for n2 in range(node_open + node_close):
            for l1 in range(LMAX):
                for l2 in range(LMAX):
                    if all_basis[l1][n1].l != l1 or all_basis[l2][n2].l != l2:
                        print("error: L is differnt")
                        sys.exit()
                    # to avoid nan in region where it can not interpolate ie: dis > rofi
                    g_V_g = np.where(
                        dis < rofi[-1],
                        g_ln_mat[n1][l1] * V_ang * g_ln_mat[n2][l2], 0.)
                    for m1 in range(-l1, l1 + 1):
                        for m2 in range(-l2, l2 + 1):
                            print(
                                "n1 = {} n2 = {} l1 = {} l2 = {} m1 = {} m2 = {}"
                                .format(n1, n2, l1, l2, m1, m2))
                            umat[n1][n2][l1][l2][m1][m2] = np.sum(
                                sph_harm_mat[l1][m1] * g_V_g *
                                sph_harm_mat[l2][m2].conjugate() / dis2) * (
                                    2 * region[0] * 2 * region[1] * 2 *
                                    region[2]) / (gridpx * gridpy * gridpz)
                            #umat[l1][l2][m1][m2][n1][n2] = simps(simps(simps(g_V_g * sph_harm_mat[l1][m1] * sph_harm_mat[l2][m2],x = z,even="first"),x = y,even="first"),x = x,even="first")
                            #umat[l1][l2][m1][m2][n1][n2] = simps(simps(simps(g_V_g * sph_harm_mat[l1][m1] * sph_harm_mat[l2][m2],x = z),x = y),x = x)
                            #umat[l1][l2][m1][m2][n1][n2] = cumtrapz(cumtrapz(cumtrapz(g_V_g * sph_harm_mat[l1][m1] * sph_harm_mat[l2][m2],x = z),x = y),x = x)
                            #umat[l1][l2][m1][m2][n1][n2] = np.sum( np.where( dis < rofi[-1] ,sph_harm(m1,l1,theta,phi) * g1 * V_ang * sph_harm(m2,l2,theta,phi) * g2 ,0. )) / (gridpx * gridpy * gridpz)
                            #                            umat_t[l1][l2][m1][m2][n1][n2] = np.sum( np.where( np.sqrt(xx * xx + yy * yy + zz * zz) < rofi[-1] ,sph_harm(m1,l1,np.arccos(zz / np.sqrt(xx **2 + yy **2 + zz **2)),np.arccos(xx / np.sqrt(xx **2 + yy **2))) * my_radial_g1_inter_func(np.sqrt(xx**2 + yy **2 + zz **2)) * my_V_ang_inter_func((xx,yy,zz)) * sph_harm(m2,l2,np.arccos(zz / np.sqrt(xx **2 + yy **2 + zz **2)),np.arccos(xx / np.sqrt(xx **2 + yy **2))) * my_radial_g2_inter_func(np.sqrt(xx **2 + yy **2 + zz **2)),0. ))
                            #                            print(umat_t[l1][l2][m1][m2][n1][n2])
                            """
                            for xi in x:
                                for yi in y:
                                    for zi in z:
                                        if np.sqrt(xi**2 + yi **2 + zi **2) < rofi[-1]:
                                            umat_t[l1][l2][m1][m2][n1][n2] += sph_harm(m1,l1,np.arccos(zi / np.sqrt(xi **2 + yi **2 + zi **2)),np.arccos(xi / np.sqrt(xi **2 + yi **2))) * my_radial_g1_inter_func(np.sqrt(xi**2 + yi **2 + zi **2)) * my_V_ang_inter_func((xi,yi,zi)) * sph_harm(m2,l2,np.arccos(zi / np.sqrt(xi **2 + yi **2 + zi **2)),np.arccos(xi / np.sqrt(xi **2 + yi **2))) * my_radial_g2_inter_func(np.sqrt(xi **2 + yi **2 + zi **2))
                            print(umat[l1][l2][m1][m2][n1][n2])
                            print(umat_t[l1][l2][m1][m2][n1][n2])
                            print(umat_t[l1][l2][m1][m2][n1][n2] - umat[l1][l2][m1][m2][n1][n2])
                            """

                            #umat[l1][l2][m1][m2][n1][n2] = tplquad( lambda x, y, z : sph_harm(m1,l1,np.arccos(z / np.sqrt(x **2 + y **2 + z **2)),np.arccos(x / np.sqrt(x **2 + y **2))).real * my_radial_g1_inter_func(np.sqrt(x**2 + y **2 + z **2)) * my_V_ang_inter_func((x,y,z)) * sph_harm(m2,l2,np.arccos(z / np.sqrt(x **2 + y **2 + z **2)),np.arccos(x / np.sqrt(x **2 + y **2))).real * my_radial_g2_inter_func(np.sqrt(x **2 + y **2 + z **2)) if np.sqrt(x **2 + y **2 + z **2) < rofi[-1] else 0 , -region, region , -region, region, -region, region)
                            print(umat[n1][n2][l1][l2][m1][m2])

    t2 = time.time()
    print("time = ", t2 - t1)