Пример #1
0
def gen_partition_from_weights(n_rows, n_cols, view_weights, clusters_weights):
    n_views = len(view_weights)
    Zv = [v for v in range(n_views)]
    for _ in range(n_cols-n_views):
        v = utils.pflip(view_weights)
        Zv.append(v)

    random.shuffle(Zv)
    assert len(Zv) == n_cols

    Zc = []
    for v in range(n_views):
        n_clusters = len(clusters_weights[v])
        Z = [c for c in range(n_clusters)]
        for _ in range(n_rows-n_clusters):
            c_weights = numpy.copy(clusters_weights[v])
            c = utils.pflip(c_weights)
            Z.append(c)
        random.shuffle(Z)
        Zc.append(Z)


    assert len(Zc) == n_views
    assert len(Zc[0]) == n_rows

    return Zv, Zc
Пример #2
0
def _gen_multinomial_data_column(Z, separation=.9, distargs=None):
    n_rows = len(Z)
    K = distargs['K']

    if separation > .95:
        separation = .95

    Tc = numpy.zeros(n_rows, dtype=int)
    C = max(Z)+1
    theta_arrays = [numpy.random.dirichlet(numpy.ones(K)*(1.0-separation), 1) for _ in range(C)]
    for r in range(n_rows):
        cluster = Z[r]
        thetas = theta_arrays[cluster][0]
        x = int(utils.pflip(thetas))
        Tc[r] = x
        
    return Tc
Пример #3
0
def _simple_predictive_sample_unobserved(state, cols, N=1):

    # get if in the same view
    views = [state.Zv[col] for col in cols]
    # get a list of the views
    V = list(set(views))

    pK_dict = dict()
    for v in V:
        log_pK = get_cluster_crps(state, v)
        pK = numpy.exp(utils.log_normalize(log_pK))
        pK_dict[v] = pK

    cluster_sets = dict()
    for col in cols:
        cluster_sets[col] = create_cluster_set(state, col)

    draws = []
    i = 0

    view_dict = dict()
    for v in V:
        which_cols = numpy.nonzero(views == v)[0]
        view_dict[v] = [col for col in which_cols]

    for _ in range(N):
        row_data = []
        for v in V:
            cols_v = view_dict[v]
            k = utils.pflip(pK_dict[v])
            for col in cols_v:
                x = cluster_sets[col][k].predictive_draw()
                row_data.append(x)

        draws.append(row_data)

    return draws
Пример #4
0
def _simple_predictive_sample_unobserved(state, cols, N=1):

    # get if in the same view
    views = [state.Zv[col] for col in cols]
    # get a list of the views
    V = list(set(views))

    pK_dict = dict()
    for v in V:
        log_pK = get_cluster_crps(state, v)
        pK = numpy.exp(utils.log_normalize(log_pK))
        pK_dict[v] = pK

    cluster_sets = dict()
    for col in cols:
        cluster_sets[col] = create_cluster_set(state, col)

    draws = []
    i = 0

    view_dict = dict()
    for v in V:
        which_cols = numpy.nonzero(views == v)[0]
        view_dict[v] = [col for col in which_cols]

    for _ in range(N):
        row_data = []
        for v in V:
            cols_v = view_dict[v]
            k = utils.pflip(pK_dict[v])
            for col in cols_v:
                x = cluster_sets[col][k].predictive_draw()
                row_data.append(x)

        draws.append(row_data)

    return draws
Пример #5
0
 def predictive_draw(self):
     return utils.pflip(w)
Пример #6
0
 def predictive_draw(self):
     return utils.pflip(w)