SAMPLING_TIME = 0.02
HORIZON = 20
COST_Q = np.diag([1, 1])
COST_P = np.diag([0, 0])
COST_R = np.diag([5 / 1000, 1])

if not TRACK_CONS:
    SUFFIX = 'NOCONS-'
else:
    SUFFIX = ''

#####################################################################
# load vehicle parameters

params = ORCA(control='pwm')
model = Dynamic(**params)

#####################################################################
# load track

TRACK_NAME = 'ETHZ'
track = ETHZ(reference='optimal', longer=True)
SIM_TIME = 8.5

#####################################################################
# load GP models

with open('../gp/orca/vxgp.pickle', 'rb') as f:
    (vxmodel, vxxscaler, vxyscaler) = pickle.load(f)
vxgp = loadGPModel('vx', vxmodel, vxxscaler, vxyscaler)
Пример #2
0
PLOT_RESULTS = False  # whether to plot results
SAVE_RESULTS = True  # whether to save results
N_WAYPOINTS = 100  # resampled waypoints
SCALE = 0.95  # shrinking factor for track width

# define indices for the nodes
NODES = [
    5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95,
    105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175,
    180, 185
]

#####################################################################
# track specific data

params = ORCA()
track = ETHZ()

track_width = track.track_width * SCALE
theta = track.theta_track[NODES]
N_DIMS = len(NODES)
n_waypoints = N_DIMS

rand_traj = randomTrajectory(track=track, n_waypoints=n_waypoints)

bounds = torch.tensor(
    [[-track_width / 2] * N_DIMS, [track_width / 2] * N_DIMS],
    device=device,
    dtype=dtype)