def main(): if len(sys.argv) != 4: print 'Invalid Command. Should be python MainHandler train_file classifier_file type(1:Neutral,2:Polarity) ' sys.exit(0) print sys.argv[1] pdata = bayesianClassifier.NBayesianMethod(sys.argv[1], sys.argv[3]) pdata.trainClassifier(sys.argv[2])
def main(): if len(sys.argv) != 2: print 'Invalid Command. Should be python MainHandler test_file ' sys.exit(0) f = open('neutral.pickle') classifier = pickle.load(f) f.close() pdata = bayesianClassifier.NBayesianMethod(sys.argv[1], "1") alltweets = [] print 'Accuracy:', nltk.classify.accuracy(classifier, [(pdata.features(d), s) for (d, s) in pdata.tweets]) for (t, s) in pdata.tweets: p = classifier.classify(pdata.features(t)) alltweets.append((t, p, s)) f = open('polar.pickle') classifier = pickle.load(f) f.close() pdata = bayesianClassifier.NBayesianMethod(sys.argv[1], 2) print 'Accuracy:', nltk.classify.accuracy(classifier, [(pdata.features(d), s) for (d, s) in pdata.tweets]) print 'Tweet \t\t\t Actual \t\t Predicted' wrong = 0 for (t, s) in pdata.tweets: p = classifier.classify(pdata.features(t)) alltweets.append((t, p, s)) for (t, p, s) in alltweets: if p != s: print p, s print t, '\t', s, '\t', p wrong = wrong + 1 print wrong print "Accuracy:", float(wrong) / len(pdata.tweets)
def main(): if len(sys.argv) != 4: print 'Invalid Command. Should be python MainHandler test_file classifier_file type(1:neutral,2:polar)' sys.exit(0) f = open(sys.argv[2]) classifier = pickle.load(f) f.close() pdata = bayesianClassifier.NBayesianMethod(sys.argv[1], sys.argv[3]) print 'Accuracy:', nltk.classify.accuracy(classifier, [(pdata.features(d), s) for (d, s) in pdata.tweets]) print 'Tweet \t\t\t Actual \t\t Predicted'
import sys import bayesianClassifier import pickle import nltk f = open('neutral.pickle') nc = pickle.load(f) f.close() ffeatred = open('neutral_woswrds.pickle') ncred = pickle.load(ffeatred) ffeatred.close() f = open('polar.pickle') pc = pickle.load(f) f.close() pdata = bayesianClassifier.NBayesianMethod('ltest.csv')
if (i <= 100): tweets.append(tweet['text']) #print( '@%s tweeted: %s' % ( tweet['user']['screen_name'], tweet['text'] ) ) i = i + 1 else: break print 'Total Tweets:', len(tweets) f = open('neutral.pickle') nc = pickle.load(f) f.close() posTweets = [] negTweets = [] nutrl = [] ppolar = bayesianClassifier.NBayesianMethod() print "************* Neutral Tweets ********************" for t in tweets: #print t s = nc.classify(ppolar.features(t)) #print t,s if (int(s) != 2): ppolar.tweets.append(t) else: nutrl.append(t) print t f = open('polar.pickle') pc = pickle.load(f) f.close() print "**************************"