Пример #1
0
def optimize(latent_dim, bounds, n_eval, run_id):
    # Optimize in the latent space
    n_pre_samples = 10
    bounds = np.tile(bounds, (latent_dim, 1))
    kernel = gp.kernels.Matern()
    gp_model = gp.GaussianProcessRegressor(kernel=kernel,
                                           alpha=1e-4,
                                           n_restarts_optimizer=100,
                                           normalize_y=False)
    zp = []
    perfs = []
    opt_perfs = [0]
    s = 1.0
    gamma = 0.99
    for i in range(n_eval):
        if i < n_pre_samples:
            z = np.random.uniform(bounds[:, 0], bounds[:, 1], size=latent_dim)
        else:
            perf_normalized = normalize(perfs)
            gp_model.fit(np.array(zp), np.array(perf_normalized))
            length_scale = gp_model.kernel_.length_scale
            print('Length scale = {}'.format(length_scale))
            previous_optimum = perf_normalized[opt_idx]
            if np.all(np.array(perfs[-5:]) ==
                      -1):  # in case getting stuck in infeasible region
                print('Back to {} ...'.format(opt_z))
                previous_point = opt_z
            else:
                previous_point = z


#            z = sample_next_point(latent_dim, neg_expected_improvement, gp_model, previous_optimum, bounds, n_restarts=100)
            z = sample_next_point(latent_dim,
                                  neg_expected_improvement,
                                  gp_model,
                                  previous_optimum,
                                  bounds=None,
                                  random_search=100000,
                                  previous_point=previous_point,
                                  scale=s)
            s *= gamma

        x = synthesize(z.reshape(1, -1), model)
        perf = evaluate(x)
        z = np.squeeze(z)
        zp.append(z)
        perfs.append(perf)
        opt_idx = np.argmax(perfs)
        opt_z = zp[opt_idx]
        opt_perf = perfs[opt_idx]
        opt_perfs.append(opt_perf)  # Best performance so far
        print('GAN-BO {}-{}: z {} CL/CD {:.2f} best-so-far {:.2f}'.format(
            run_id, i + 1, z, perf, opt_perf))

    opt_z = opt_z.reshape(1, -1)
    opt_airfoil = synthesize(opt_z, model)
    print('Optimal: z {} CL/CD {}'.format(opt_z, opt_perfs[-1]))

    return opt_airfoil, opt_perfs
Пример #2
0
def optimize(bounds, n_eval, run_id):
    # Optimize using BO
    n_pre_samples = 10
    kernel = gp.kernels.Matern()
    gp_model = gp.GaussianProcessRegressor(kernel=kernel,
                                           alpha=1e-4,
                                           n_restarts_optimizer=100,
                                           normalize_y=False)
    xs = []
    perfs = []
    opt_perfs = [0]
    for i in range(n_eval):
        if len(xs) < n_pre_samples:
            x = np.random.uniform(bounds[:, 0], bounds[:, 1], size=d)
        else:
            perfs_normalized = normalize(perfs)
            gp_model.fit(np.array(xs), np.array(perfs_normalized))
            print('Length scale = {}'.format(gp_model.kernel_.length_scale))
            previous_optimum = np.max(perfs_normalized)
            #            x = sample_next_point(d, neg_expected_improvement, gp_model, previous_optimum, bounds, n_restarts=100)
            x = sample_next_point(d,
                                  neg_expected_improvement,
                                  gp_model,
                                  previous_optimum,
                                  bounds,
                                  random_search=100000)
        airfoil = synthesize(x, U_upper, U_lower, p, n_points)
        perf = evaluate(airfoil)
        print('NURBS-BO %d-%d: CL/CD %.2f' % (run_id, i + 1, perf))
        xs.append(x)
        perfs.append(perf)
        opt_perfs.append(np.max(perfs))  # Best performance so far

    opt_x = xs[np.argmax(perfs)]
    opt_airfoil = synthesize(opt_x, U_upper, U_lower, p, n_points)
    print('Optimal CL/CD: {}'.format(opt_perfs[-1]))

    return opt_airfoil, opt_perfs