Пример #1
0
    def get_example(self):
        if self.mix:  # Training phase of BC learning
            # Select two training examples
            while True:
                sound1, label1 = self.base[random.randint(
                    0,
                    len(self.base) - 1)]
                sound2, label2 = self.base[random.randint(
                    0,
                    len(self.base) - 1)]
                if label1 != label2:
                    break
            sound1 = self.preprocess(sound1)
            sound2 = self.preprocess(sound2)

            # Mix two examples
            r = np.array(random.random())
            sound = U.mix(sound1, sound2, r, self.opt.fs).astype(np.float32)
            eye = np.eye(self.opt.nClasses)
            label = (eye[label1] * r + eye[label2] * (1 - r)).astype(
                np.float32)

        else:  # Training phase of standard learning or testing phase
            sound, label = self.base[i]
            sound = self.preprocess(sound).astype(np.float32)
            label = np.array(label, dtype=np.int32)

        if self.train and self.opt.strongAugment:
            sound = U.random_gain(6)(sound).astype(np.float32)

        return sound, label
Пример #2
0
    def _generate_sample(self, fIdA, fIdB):
        '''
        Takes 2 audio fileidx, preprocess them, mix them (if needed)
        '''
        sound1, label1 = self.fId_to_sound(fIdA)
        sound2, label2 = self.fId_to_sound(fIdB)
        if self.n_classes == 10:
            lbl_indexes = {0:0,  1:1,  10:2, 11:3, 12:4, 
                           20:5, 21:6, 38:7, 40:8, 41:9}
            label1 = lbl_indexes[label1]
            label2 = lbl_indexes[label2]

        if self.mix:  # Mix two examples
            r = np.array(random.random())
            sound = U.mix(sound1, sound2, r, self.audio_rate) # delays
            sound = sound.astype(np.float32)
            eye = np.eye(self.n_classes)
            label = (eye[label1] * r + eye[label2] * (1 - r))
            label = label.astype(np.float32)

        else:
            sound, label = sound1, label1

        if self.strongAugment:
            sound = U.random_gain(6)(sound).astype(np.float32)

        sound = sound[:, np.newaxis]

        return sound, label
Пример #3
0
    def _data_gen(self):
        self.stop = False
        while not self.stop:
            idxs1 = list(self.df.index)
            idxs2 = list(self.df.index)
            if self.randomize:
                random.shuffle(idxs1)
                random.shuffle(idxs2)

            for idx1, idx2 in zip(idxs1, idxs2):
                fname1 = self.df.filename[idx1]
                fname2 = self.df.filename[idx2]
                sound1 = self.fname_to_wav(fname1)
                sound2 = self.fname_to_wav(fname2)
                sound1 = self.preprocess(sound1)
                sound2 = self.preprocess(sound2)
                label1 = self.df.target[idx1]
                label2 = self.df.target[idx2]
                if self.n_classes == 10:
                    lbl_indexes = [0, 1, 10, 11, 12, 20, 21, 38, 40, 41]
                    label1 = lbl_indexes.index(label1)
                    label2 = lbl_indexes.index(label2)

                if self.mix:
                    # Mix two examples
                    r = np.array(random.random())
                    sound = U.mix(sound1, sound2, r, self.audio_rate)
                    sound = sound.astype(np.float32)
                    eye = np.eye(self.n_classes)
                    label = (eye[label1] * r + eye[label2] * (1 - r))
                    label = label.astype(np.float32)

                else:
                    sound, label = sound1, label1

                if self.strongAugment:
                    sound = U.random_gain(6)(sound).astype(np.float32)

                sound = sound[:, np.newaxis]

                yield sound, label