Пример #1
0
    # Record data for mental activity 0
    BCIw.beep()
    eeg_data0, timestamps0 = inlet.pull_chunk(timeout=training_length + 1,
                                              max_samples=fs * training_length)
    eeg_data0 = np.array(eeg_data0)[:, index_channel]

    print('\nClose your eyes!\n')

    # Record data for mental activity 1
    BCIw.beep()  # Beep sound
    eeg_data1, timestamps1 = inlet.pull_chunk(timeout=training_length + 1,
                                              max_samples=fs * training_length)
    eeg_data1 = np.array(eeg_data1)[:, index_channel]

    # Divide data into epochs
    eeg_epochs0 = BCIw.epoch(eeg_data0, epoch_length * fs, overlap_length * fs)
    eeg_epochs1 = BCIw.epoch(eeg_data1, epoch_length * fs, overlap_length * fs)
    """ 4. COMPUTE FEATURES AND TRAIN CLASSIFIER """

    feat_matrix0 = BCIw.compute_feature_matrix(eeg_epochs0, fs)
    feat_matrix1 = BCIw.compute_feature_matrix(eeg_epochs1, fs)

    [classifier, mu_ft, std_ft,
     score] = BCIw.train_classifier(feat_matrix0, feat_matrix1, 'SVM')

    print(str(score * 100) + '% correctly predicted')

    BCIw.beep()
    """ 5. USE THE CLASSIFIER IN REAL-TIME"""

    # Initialize the buffers for storing raw EEG and decisions
Пример #2
0
    # Record data for mental activity 0
    BCIw.beep()
    eeg_data0, timestamps0 = inlet.pull_chunk(
            timeout=training_length+1, max_samples=fs * training_length)
    eeg_data0 = np.array(eeg_data0)[:, index_channel]

    print('\nClose your eyes!\n')

    # Record data for mental activity 1
    BCIw.beep()  # Beep sound
    eeg_data1, timestamps1 = inlet.pull_chunk(
            timeout=training_length+1, max_samples=fs * training_length)
    eeg_data1 = np.array(eeg_data1)[:, index_channel]

    # Divide data into epochs
    eeg_epochs0 = BCIw.epoch(eeg_data0, epoch_length * fs,
                             overlap_length * fs)
    eeg_epochs1 = BCIw.epoch(eeg_data1, epoch_length * fs,
                             overlap_length * fs)

    """ 4. COMPUTE FEATURES AND TRAIN CLASSIFIER """

    feat_matrix0 = BCIw.compute_feature_matrix(eeg_epochs0, fs)
    feat_matrix1 = BCIw.compute_feature_matrix(eeg_epochs1, fs)

    [classifier, mu_ft, std_ft, score] = BCIw.train_classifier(
            feat_matrix0, feat_matrix1, 'SVM')

    print(str(score * 100) + '% correctly predicted')

    BCIw.beep()
def preprocess_eeg(p):
    uf = butter_bandpass_filter(p, 2, 8, 256)
    uf = BCIw.epoch(uf, 256, 0.8 * 256)
    return uf