Пример #1
0
def offline_analysis(data_folder: str = None,
                     parameters: dict = {},
                     alert_finished: bool = True):
    """ Gets calibration data and trains the model in an offline fashion.
        pickle dumps the model into a .pkl folder
        Args:
            data_folder(str): folder of the data
                save all information and load all from this folder
            parameter(dict): parameters for running offline analysis
            alert_finished(bool): whether or not to alert the user offline analysis complete

        How it Works:
        - reads data and information from a .csv calibration file
        - reads trigger information from a .txt trigger file
        - filters data
        - reshapes and labels the data for the training procedure
        - fits the model to the data
            - uses cross validation to select parameters
            - based on the parameters, trains system using all the data
        - pickle dumps model into .pkl file
        - generates and saves offline analysis screen
        - [optional] alert the user finished processing
    """

    if not data_folder:
        data_folder = load_experimental_data()

    mode = 'calibration'
    trial_length = parameters.get('collection_window_after_trial_length')

    raw_dat, _, channels, type_amp, fs = read_data_csv(
        data_folder + '/' + parameters.get('raw_data_name', 'raw_data.csv'))

    log.info(f'Channels read from csv: {channels}')
    log.info(f'Device type: {type_amp}')

    downsample_rate = parameters.get('down_sampling_rate', 2)

    # Remove 60hz noise with a notch filter
    notch_filter_data = notch.notch_filter(raw_dat, fs, frequency_to_remove=60)

    # bandpass filter from 2-45hz
    filtered_data = bandpass.butter_bandpass_filter(notch_filter_data,
                                                    2,
                                                    45,
                                                    fs,
                                                    order=2)

    # downsample
    data = downsample.downsample(filtered_data, factor=downsample_rate)

    # Process triggers.txt
    triggers_file = parameters.get('trigger_file_name', 'triggers.txt')
    _, t_t_i, t_i, offset = trigger_decoder(
        mode=mode, trigger_path=f'{data_folder}/{triggers_file}')

    static_offset = parameters.get('static_trigger_offset', 0)

    offset = offset + static_offset

    # Channel map can be checked from raw_data.csv file.
    # read_data_csv already removes the timespamp column.
    channel_map = analysis_channels(channels, type_amp)

    x, y, _, _ = trial_reshaper(t_t_i,
                                t_i,
                                data,
                                mode=mode,
                                fs=fs,
                                k=downsample_rate,
                                offset=offset,
                                channel_map=channel_map,
                                trial_length=trial_length)

    k_folds = parameters.get('k_folds', 10)

    model, auc = train_pca_rda_kde_model(x, y, k_folds=k_folds)

    log.info('Saving offline analysis plots!')

    # After obtaining the model get the transformed data for plotting purposes
    model.transform(x)
    generate_offline_analysis_screen(
        x,
        y,
        model=model,
        folder=data_folder,
        down_sample_rate=downsample_rate,
        fs=fs,
        save_figure=True,
        show_figure=False,
        channel_names=analysis_channel_names_by_pos(channels, channel_map))

    log.info('Saving the model!')
    with open(data_folder + f'/model_{auc}.pkl', 'wb') as output:
        pickle.dump(model, output)

    if alert_finished:
        offline_analysis_tone = parameters.get('offline_analysis_tone')
        play_sound(offline_analysis_tone)

    return model
Пример #2
0
def _demo_validate_real_data():
    ds_rate = 2
    channel_map = [1] * 16 + [0, 0, 1, 1, 0, 1, 1, 1, 0]
    data_train_folder = load_experimental_data()

    mode = 'calibration'

    raw_dat, stamp_time, channels, type_amp, fs = read_data_csv(
        data_train_folder + '/rawdata.csv')

    dat = sig_pro(raw_dat, fs=fs, k=ds_rate)

    # Get data and labels
    s_i, t_t_i, t_i = trigger_decoder(mode=mode,
                                      trigger_loc=data_train_folder +
                                      '/triggers.txt')
    x_train, y_train, num_seq, _ = trial_reshaper(t_t_i,
                                                  t_i,
                                                  dat,
                                                  mode=mode,
                                                  fs=fs,
                                                  k=ds_rate,
                                                  channel_map=channel_map)

    model = train_pca_rda_kde_model(x_train, y_train, k_folds=10)

    fig = plt.figure()
    ax = fig.add_subplot(211)
    x_plot = np.linspace(np.min(model.line_el[-1]), np.max(model.line_el[-1]),
                         1000)[:, np.newaxis]
    ax.plot(model.line_el[2][y_train == 0],
            -0.005 -
            0.01 * np.random.random(model.line_el[2][y_train == 0].shape[0]),
            'ro',
            label='class(-)')
    ax.plot(model.line_el[2][y_train == 1],
            -0.005 -
            0.01 * np.random.random(model.line_el[2][y_train == 1].shape[0]),
            'go',
            label='class(+)')
    for idx in range(len(model.pipeline[2].list_den_est)):
        log_dens = model.pipeline[2].list_den_est[idx].score_samples(x_plot)
        ax.plot(x_plot[:, 0],
                np.exp(log_dens),
                'r-' * (idx == 0) + 'g-' * (idx == 1),
                linewidth=2.0)

    ax.legend(loc='upper right')
    plt.title('Training Data')
    plt.ylabel('p(e|l)')
    plt.xlabel('scores')

    # Test
    data_test_folder = load_experimental_data()

    mode = 'calibration'

    raw_dat, stamp_time, channels, type_amp, fs = read_data_csv(
        data_test_folder + '/rawdata.csv')
    dat = sig_pro(raw_dat, fs=fs, k=ds_rate)

    # Get data and labels
    s_i, t_t_i, t_i = trigger_decoder(mode=mode,
                                      trigger_loc=data_test_folder +
                                      '/triggers.txt')
    x_test, y_test, num_seq, _ = trial_reshaper(t_t_i,
                                                t_i,
                                                dat,
                                                mode=mode,
                                                fs=fs,
                                                k=ds_rate,
                                                channel_map=channel_map)

    model.transform(x_test)

    ax.plot(model.line_el[2][y_test == 0],
            -0.01 -
            0.01 * np.random.random(model.line_el[2][y_test == 0].shape[0]),
            'bo',
            label='t_class(-)')
    ax.plot(model.line_el[2][y_test == 1],
            -0.01 -
            0.01 * np.random.random(model.line_el[2][y_test == 1].shape[0]),
            'ko',
            label='t_class(+)')

    bandwidth = 1.06 * min(np.std(model.line_el[2]),
                           iqr(model.line_el[2]) / 1.34) * np.power(
                               model.line_el[2].shape[0], -0.2)
    test_kde = KernelDensityEstimate(bandwidth=bandwidth)
    test_kde.fit(model.line_el[2], y_test)

    for idx in range(len(model.pipeline[2].list_den_est)):
        log_dens = test_kde.list_den_est[idx].score_samples(x_plot)
        ax.plot(x_plot[:, 0],
                np.exp(log_dens),
                'b--' * (idx == 0) + 'k--' * (idx == 1),
                linewidth=2.0)

    ax.legend(loc='upper right')
    plt.title('Training Data')
    plt.ylabel('p(e|l)')
    plt.xlabel('scores')

    plt.show()
Пример #3
0
def offline_analysis(data_folder=None, parameters={}):
    """ Gets calibration data and trains the model in an offline fashion.
        pickle dumps the model into a .pkl folder
        Args:
            data_folder(str): folder of the data
                save all information and load all from this folder

        Duty cycle
        - reads data and information from a .csv calibration file
        - reads trigger information from a .txt trigger file
        - filters data
        - reshapes and labels the data for the training procedure
        - fits the model to the data
            - uses cross validation to select parameters
            - based on the parameters, trains system using all the data
        - pickle dumps model into .pkl file
        - generates and saves offline analysis screen
    """

    if not data_folder:
        data_folder = load_experimental_data()

    mode = 'calibration'

    raw_dat, stamp_time, channels, type_amp, fs = read_data_csv(
        data_folder + '/' + parameters.get('raw_data_name', 'raw_data.csv'))

    print(f'Channels read from csv: {channels}')
    print(f'Device type: {type_amp}')

    downsample_rate = parameters.get('down_sampling_rate', 2)
    filtered_data = sig_pro(raw_dat, fs=fs, k=downsample_rate)

    # Process triggers.txt
    triggers_file = parameters.get('triggers_file_name', 'triggers.txt')
    _, t_t_i, t_i, offset = trigger_decoder(
        mode=mode, trigger_loc=f"{data_folder}/{triggers_file}")

    # Channel map can be checked from raw_data.csv file.
    # read_data_csv already removes the timespamp column.
    channel_map = analysis_channels(channels, type_amp)

    x, y, num_seq, _ = trial_reshaper(t_t_i,
                                      t_i,
                                      filtered_data,
                                      mode=mode,
                                      fs=fs,
                                      k=downsample_rate,
                                      offset=offset,
                                      channel_map=channel_map)

    k_folds = parameters.get('k_folds', 10)
    model = train_pca_rda_kde_model(x, y, k_folds=10)

    print('Saving offline analysis plots!')
    generate_offline_analysis_screen(x, y, model, data_folder)

    print('Saving the model!')
    with open(data_folder + '/model.pkl', 'wb') as output:
        pickle.dump(model, output)
    return model