Пример #1
0
        default="logL",
        choices=params,
        help='Choose column for yaxis \
                        Must be one of: "{}"'.format('", "'.join(params)),
    )
    parser.add_argument(
        "--chi2min",
        type=float,
        default=20.0,
        help="chi2min threshold for splitting plots",
    )
    args = parser.parse_args()
    if args.tex:
        plt.rc({"usetex": True})
    basename = args.filename.replace(".fits", "_diagnostics")

    set_params(lw=2, fontsize=16, usetex=False)
    stats = Table.read(args.filename)
    fig = make_good_bad_plots(
        stats,
        suffix=args.suffix,
        xparam=args.xparam,
        yparam=args.yparam,
        chi2min=args.chi2min,
    )

    if args.savefig:
        fig.savefig("{}.{}".format(basename, args.savefig))
    else:
        plt.show()
Пример #2
0
def plot_toothpick_details(asts_filename, seds_filename, savefig=False):
    """
    Plot the details of the toothpick noisemodel creation for each filter.
    These plots show the individual AST results as points as
    (flux_in - flux_out)/flux_in.  In addition, the binned values of these
    points are plotted giving the bias term in the observation model.
    Error bars around the binned bias values give the binned sigma term of
    the observation model.  Finally, as a separate column of plots the
    binned completeness in each filter is plotted.

    Parameters
    ----------
    asts_filename : str
        filename with the AST results

    seds_filename : str
        filename with the SED grid (used just for the filter information)

    savefig : str (default=False)
        to save the figure, set this to the file extension (e.g., 'png', 'pdf')
    """
    sedgrid = SEDGrid(seds_filename, backend="cache")

    # read in AST results
    model = toothpick.MultiFilterASTs(asts_filename, sedgrid.filters)

    # set the column mappings as the external file is BAND_VEGA or BAND_IN
    model.set_data_mappings(upcase=True,
                            in_pair=("in", "in"),
                            out_pair=("out", "rate"))

    # compute binned biases, uncertainties, and completeness as a function of band flux
    model.fit_bins(nbins=50, completeness_mag_cut=-10)

    nfilters = len(sedgrid.filters)
    fig, ax = plt.subplots(nrows=nfilters,
                           ncols=2,
                           figsize=(14, 10),
                           sharex=True)
    set_params()

    for i, cfilter in enumerate(sedgrid.filters):
        mag_in = model.data[model.filter_aliases[cfilter + "_in"]]
        flux_out = model.data[model.filter_aliases[cfilter + "_out"]]

        flux_in = (10**(-0.4 * mag_in)) * model.vega_flux[i]
        flux_out *= model.vega_flux[i]

        gvals = flux_out != 0.0

        ax[i, 0].plot(
            flux_in[gvals],
            (flux_in[gvals] - flux_out[gvals]) / flux_in[gvals],
            "ko",
            alpha=0.1,
            markersize=2,
        )

        # not all bins are filled with good data
        ngbins = model._nasts[i]

        ax[i, 0].plot(
            model._fluxes[0:ngbins, i],
            model._biases[0:ngbins, i] / model._fluxes[0:ngbins, i],
            "b-",
        )

        ax[i, 0].errorbar(
            model._fluxes[0:ngbins, i],
            model._biases[0:ngbins, i] / model._fluxes[0:ngbins, i],
            yerr=model._sigmas[0:ngbins, i] / model._fluxes[0:ngbins, i],
            fmt="bo",
            markersize=2,
            alpha=0.5,
        )

        ax[i, 0].set_ylim(-5e0, 5e0)
        ax[i, 0].set_xscale("log")
        ax[i, 0].set_ylabel(r"$(F_i - F_o)/F_i$")

        ax[i, 1].plot(
            model._fluxes[0:ngbins, i],
            model._compls[0:ngbins, i],
            "b-",
        )

        ax[i, 1].yaxis.tick_right()
        ax[i, 1].yaxis.set_label_position("right")
        ax[i, 1].set_ylim(0, 1)
        ax[i, 1].set_xscale("log")
        sfilt = cfilter.split("_")[-1]
        ax[i, 1].set_ylabel(f"C({sfilt})")

    ax[nfilters - 1, 0].set_xlabel(r"$F_i$")
    ax[nfilters - 1, 1].set_xlabel(r"$F_i$")

    # add in the zero line
    # do after all the data has been plotted to get the full x range
    pxrange = ax[0, 0].get_xlim()
    for i, cfilter in enumerate(sedgrid.filters):
        ax[i, 0].plot(pxrange, [0.0, 0.0], "k--", alpha=0.5)

    # figname
    basename = asts_filename.replace(".fits", "_plot")

    fig.tight_layout()

    # save or show fig
    if savefig:
        fig.savefig("{}.{}".format(basename, savefig))
    else:
        plt.show()
Пример #3
0
def plot_cmd(
    fitsfile,
    mag1_filter="F475W",
    mag2_filter="F814W",
    mag3_filter="F475W",
    savefig=False,
    show_plot=True,
):
    """
    Read in flux from real or simulated data in fitsfile and plot a
    color-magnitude diagram based on specified filters.

    Parameters
    ----------
    fitsfile : str
        input fitsfile (includes full path to file); format = .fits
    mag1_filter : str (default='F475W')
        1st color filter
    mag2_filter : str (default='F814W')
        2nd color filter
    mag3_filter : str (default='F475W')
        magnitude
    savefig : str (default=False)
        to save the figure, set this to the file extension (e.g., 'png', 'pdf')
    show_plot : boolean
        True, show the plot (to screen or a file)
        False, return the fig
    """

    fits_data = fits.open(fitsfile)
    table = fits_data[1].data
    fits_data.close()

    # Read in band_rate
    mag1_flux = table["%s" % (mag1_filter + "_rate")]
    mag2_flux = table["%s" % (mag2_filter + "_rate")]
    mag_flux = table["%s" % (mag3_filter + "_rate")]

    # Exclude negative or 0 fluxes
    m1_pos_inds = np.where(mag1_flux > 0.0)
    m2_pos_inds = np.where(mag2_flux > 0.0)
    m_pos_inds = np.where(mag_flux > 0.0)
    pos_inds = reduce(np.intersect1d, (m1_pos_inds, m2_pos_inds, m_pos_inds))
    mag1_flux_pos = mag1_flux[pos_inds]
    mag2_flux_pos = mag2_flux[pos_inds]
    mag_flux_pos = mag_flux[pos_inds]

    # Convert from flux to mags
    mag1 = (-2.5) * np.log10(mag1_flux_pos)
    mag2 = (-2.5) * np.log10(mag2_flux_pos)
    mag = (-2.5) * np.log10(mag_flux_pos)

    col = mag1 - mag2

    fig = plt.figure(figsize=(9, 9))

    # sets up plots to have larger fonts, wider lines, etc.
    set_params()

    plt.plot(col, mag, "k.", ms=0.1)

    plt.gca().invert_yaxis()

    plt.xlabel("%s - %s" % (mag1_filter, mag2_filter))
    plt.ylabel(mag3_filter)
    plt.title(fitsfile)

    fig.tight_layout()

    # figname
    basename = fitsfile.replace(".fits", "_plot")

    # save or show fig
    if show_plot:
        if savefig:
            fig.savefig("{}.{}".format(basename, savefig))
        else:
            plt.show()
    else:
        return fig