Пример #1
0
def homing(T, tb1, memory, cx, acceleration=default_acc, drag=default_drag,
           current_heading=0.0, current_velocity=np.array([0.0, 0.0]),
           turn_sharpness=1.0, logging=True, bump_shift=0.0,
           filtered_steps=0.0):
    """Based on current state, return home. First is duplicate"""
    headings = np.empty(T + 1)
    headings[0] = current_heading
    velocity = np.empty([T + 1, 2])
    velocity[0, :] = current_velocity

    if logging:
        cx_log = CXLogger(0, T + 1, cx)
    else:
        cx_log = None

    for t in range(1, T + 1):
        r = headings[t - 1] - headings[t - 2]
        r = (r + np.pi) % (2 * np.pi) - np.pi
        tl2, cl1, tb1, tn1, tn2, memory, cpu4, cpu1, motor = update_cells(
            heading=headings[t - 1] + np.sign(r) * bump_shift,  # Remove sign to use proportionate shift
            velocity=velocity[t - 1],
            tb1=tb1,
            memory=memory,
            cx=cx,
            filtered_steps=filtered_steps)
        if logging:
            cx_log.update_log(t, tl2, cl1, tb1, tn1, tn2, memory, cpu4, cpu1,
                              motor)
        rotation = turn_sharpness * motor

        headings[t], velocity[t, :] = bee_simulator.get_next_state(
            headings[t - 1], velocity[t - 1, :], rotation, acceleration, drag)
    return headings, velocity, cx_log
Пример #2
0
def walking(T,
            tb1,
            memory,
            cx,
            acceleration=default_acc,
            drag=default_drag,
            current_heading=0.0,
            current_velocity=np.array([0.0, 0.0]),
            turn_sharpness=1.0,
            logging=True,
            bump_shift=0.0,
            filtered_steps=0.0,
            current_pos=[0, 0],
            reward=None):
    headings = np.empty(T + 1)
    headings[0] = current_heading
    velocity = np.empty([T + 1, 2])
    velocity[0, :] = current_velocity

    positions = np.empty([T + 1, 2])
    positions[0, :] = current_pos

    if logging:
        cx_log = CXLogger(0, T + 1, cx)
    else:
        cx_log = None

    inrew = []
    for t in range(1, T + 1):
        r = headings[t - 1] - headings[t - 2]
        r = (r + np.pi) % (2 * np.pi) - np.pi
        tl2, cl1, tb1, tn1, tn2, memory, cpu4, cpu1, motor = update_cells(
            heading=headings[t - 1] +
            np.sign(r) * bump_shift,  # Remove sign to use proportionate shift
            velocity=velocity[t - 1],
            tb1=tb1,
            memory=memory,
            cx=cx,
            filtered_steps=filtered_steps)
        if logging:
            cx_log.update_log(t, tl2, cl1, tb1, tn1, tn2, memory, cpu4, cpu1,
                              motor)
        rotation = turn_sharpness * motor

        headings[t], velocity[t, :] = bee_simulator.get_next_state(
            headings[t - 1], velocity[t - 1, :], rotation, acceleration, drag)

        positions[t, :] = positions[t - 1, :] + velocity[t, :]
        if point_in_reward(positions[t, :], reward):
            # print('in')
            memory = init_memory()
            inrew.append(positions[t])

    return dict(h=headings,
                v=velocity,
                pos=positions,
                log=cx_log,
                in_reward=inrew)
Пример #3
0
def generate_route(T=1500,
                   mean_acc=default_acc,
                   drag=default_drag,
                   kappa=100.0,
                   max_acc=default_acc,
                   min_acc=0.0,
                   vary_speed=False,
                   seed=None):
    """Generate a random outbound route using bee_simulator physics.
    The rotations are drawn randomly from a von mises distribution and smoothed
    to ensure the agent makes more natural turns."""
    if seed:
        np.random.seed(seed)
    # Generate random turns
    mu = 0.0
    vm = np.random.vonmises(mu, kappa, T)
    rotation = lfilter([1.0], [1, -0.4], vm)
    rotation[0] = 0.0

    # Randomly sample some points within acceptable acceleration and
    # interpolate to create smoothly varying speed.
    if vary_speed:
        if T > 200:
            num_key_speeds = T / 50
        else:
            num_key_speeds = 4
        x = np.linspace(0, 1, num_key_speeds)
        y = np.random.random(num_key_speeds) * (max_acc - min_acc) + min_acc
        f = interp1d(x, y, kind='cubic')
        xnew = np.linspace(0, 1, T, endpoint=True)
        acceleration = f(xnew)
    else:
        acceleration = mean_acc * np.ones(T)

    # Get headings and velocity for each step
    headings = np.zeros(T)
    velocity = np.zeros([T, 2])

    for t in range(1, T):
        headings[t], velocity[t, :] = bee_simulator.get_next_state(
            heading=headings[t - 1],
            velocity=velocity[t - 1, :],
            rotation=rotation[t],
            acceleration=acceleration[t],
            drag=drag)
    return headings, velocity
Пример #4
0
        def update(t, x):
            self.heading, self.velocity = bee_simulator.get_next_state(
                heading=self.heading,
                velocity=self.velocity,
                rotation=x[0] * dt,
                acceleration=self.acceleration,
                drag=self.drag)
            self.x += self.velocity[1] * dt
            self.y += self.velocity[0] * dt

            if self.trail_length > 0:
                if self.last_trail_time is None or t > self.last_trail_time + self.trail_dt:
                    self.trail.append((self.x, self.y))
                    if len(self.trail) > self.trail_length:
                        self.trail = self.trail[1:]
                    self.last_trail_time = t
            return x