Пример #1
0
def test_t9(algorithm, const):
    def odefun(y, _, k):
        return 2 * y[1], 2 * (-(4 * y[2] * y[1] + 2 * y[0]) /
                              (k[0] + y[2]**2)), 2

    def odejac(y, _, k):
        df_dy = np.array(
            [[0, 2, 0],
             [
                 -4 / (y[2]**2 + k[0]), -(8 * y[2]) / (y[2]**2 + k[0]),
                 (4 * y[2] * (2 * y[0] + 4 * y[1] * y[2])) /
                 (y[2]**2 + k[0])**2 - (8 * y[1]) / (y[2]**2 + k[0])
             ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, k):
        return y0[0] - 1 / (1 + k[0]), yf[0] - 1 / (1 + k[0]), y0[2] + 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=2)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0., 1., 2)
    # noinspection PyTypeChecker
    solinit.y = np.array([[1. / (1. + const), 0., -1.],
                          [1. / (1. + const), 1., 1.]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = 1 / (sol.const[0] + sol.y[:, 2]**2)
    e2 = -(2 * sol.y[:, 2]) / (sol.y[:, 2]**2 + sol.const[0])**2
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
def test_t2(const):
    def odefun(y, _, k):
        return y[1], y[1] / k[0]

    def odejac(_, __, k):
        df_dy = np.array([[0, 1], [0, 1 / k[0]]])
        df_dp = np.empty((2, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0] - 1, yf[0]

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 1], [0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = (1.e0 - np.exp(
        (sol.t - 1.e0) / sol.const)) / (1.e0 - np.exp(-1.e0 / sol.const))
    e2 = np.exp((sol.t - 1) / sol.const) / (sol.const *
                                            (1 / np.exp(1 / sol.const) - 1))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Пример #3
0
def test_t5(algorithm, const):
    def odefun(y, _, k):
        return (2 * y[1], 2 * ((y[0] + y[2] * y[1] -
                                (1 + k[0] * np.pi**2) * np.cos(np.pi * y[2]) +
                                y[2] * np.pi * np.sin(np.pi * y[2])) / k[0]),
                2)

    def odejac(y, _, k):
        df_dy = np.array(
            [[0, 2, 0],
             [
                 2 / k[0], 2 * y[2] / k[0],
                 (2 * (y[1] + np.pi * np.sin(np.pi * y[2]) +
                       np.pi * np.sin(np.pi * y[2]) * (k * np.pi**2 + 1) +
                       np.pi * np.pi * y[2] * np.cos(np.pi * y[2]))) / k[0]
             ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0] + 1, yf[0] + 1, y0[2] + 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.cos(np.pi * sol.y[:, 2])
    e2 = -np.pi * np.sin(np.pi * sol.y[:, 2])
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
def test_t17(const):
    def odefun(y, _, k):
        return 0.2 * y[1], 0.2 * (-3 * k[0] * y[0] / (k[0] + y[2]**2)**2), 0.2

    def odejac(y, _, k):
        df_dy = np.array([[0, 0.2, 0],
                          [
                              -(3 * k[0]) / (5 * (y[2]**2 + k[0])**2), 0,
                              (12 * k[0] * y[0] * y[2]) / (5 *
                                                           (y[2]**2 + k[0])**3)
                          ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, k):
        return y0[0] + 0.1 / np.sqrt(k[0] + 0.01), yf[0] - 0.1 / np.sqrt(
            k[0] + 0.01), y0[2] + 0.1

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0, 0], [0, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = sol.y[:, 2] / np.sqrt(sol.const[0] + sol.y[:, 2]**2)
    e2 = 1 / np.sqrt(sol.y[:, 2]**2 + sol.const[0]) - sol.y[:, 2]**2 / (
        sol.y[:, 2]**2 + sol.const[0])**(3 / 2)
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Пример #5
0
def test_trajectory():
    t = np.array([0, 1, 2, 3])
    y1 = t ** 2

    gam = Trajectory(t, y1)
    y, q, u = gam(0.5)
    assert y == 0.5
    assert len(q) == 0
    assert len(u) == 0

    y, q, u = gam(0.25)
    assert y == 0.25
    assert len(q) == 0
    assert len(u) == 0

    gam.set_interpolate_function('cubic')

    y, q, u = gam(0.25)
    assert y - 0.0625 < 1e-4
    assert len(q) == 0
    assert len(u) == 0

    t, y, q, u = gam[0]
    assert t == 0
    assert y == 0
    assert len(q) == 0
    assert len(u) == 0
Пример #6
0
def test_t1(algorithm, const):
    def odefun(y, _, k):
        return y[1], y[0] / k[0]

    def odejac(_, __, k):
        df_dy = np.array([[0, 1], [1 / k[0], 0]])
        df_dp = np.empty((2, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0] - 1, yf[0]

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 1], [0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = (np.exp(-sol.t / np.sqrt(sol.const)) - np.exp(
        (sol.t - 2) / np.sqrt(sol.const))) / (
            1 - np.exp(-2.e0 / np.sqrt(sol.const)))
    e2 = (1. /
          (sol.const**(1 / 2) * np.exp(sol.t / sol.const**(1 / 2))) + np.exp(
              (sol.t - 2) / sol.const**(1 / 2)) / sol.const**
          (1 / 2)) / (1 / np.exp(2 / sol.const**(1 / 2)) - 1)
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
    def map(self,
            sol: Solution,
            control_costate: Union[float, np.ndarray] = 0.) -> Solution:
        idx_u_list = []

        for idx_u, (idx_y,
                    u) in enumerate(sorted(zip(self.control_idxs, sol.u.T))):
            sol.y = np.insert(sol.y, idx_y, u, axis=1)

            if isinstance(control_costate, Iterable):
                if not isinstance(control_costate, np.ndarray):
                    control_costate = np.array(control_costate)
                costate_insert = control_costate[idx_u] * np.ones_like(sol.t)
            else:
                costate_insert = control_costate * np.ones_like(sol.t)

            sol.dual = np.insert(sol.dual, -1, costate_insert, axis=1)
            if len(sol.dual_u) == 0:
                sol.dual_u = np.array([costate_insert])
            else:
                sol.dual_u = np.insert(sol.dual_u, -1, costate_insert, axis=1)

            idx_u_list.append(idx_u)

        sol.u = np.delete(sol.u, idx_u_list, axis=1)
        return sol
def test_t16(const):
    def odefun(y, _, k):
        return 1 * y[1], 1 * (-y[0] * np.pi**2 / (4 * k[0])), 1

    def odejac(_, __, k):
        df_dy = np.array([[0, 1, 0], [-np.pi**2 / (4 * k[0]), 0, 0], [0, 0,
                                                                      0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, k):
        return y0[0], yf[0] - np.sin(np.pi / (2 * np.sqrt(k[0]))), y0[2]

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0, 0], [0, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.sin(np.pi * sol.y[:, 2] / (2 * np.sqrt(sol.const[0])))
    e2 = (np.pi * np.cos(
        (np.pi * sol.y[:, 2]) /
        (2 * np.sqrt(sol.const[0])))) / (2 * np.sqrt(sol.const[0]))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
def test_t10(const):
    def odefun(y, _, k):
        return 2 * y[1], 2 * (-y[2] * y[1] / k[0]), 2

    def odejac(y, _, k):
        df_dy = np.array([[0, 2,
                           0], [0, 2 * (-y[2]) / k[0], 2 * (-y[1] / k[0])],
                          [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0], yf[0] - 2, y0[2] + 1

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0, -1], [2, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = 1 + erf(sol.y[:, 2] / np.sqrt(2 * sol.const[0])) / erf(
        1 / np.sqrt(2 * sol.const[0]))
    e2 = np.sqrt(2) / (np.sqrt(np.pi) * np.sqrt(sol.const[0]) * np.exp(
        sol.y[:, 2]**2 /
        (2 * sol.const[0])) * erf(np.sqrt(2) / (2 * np.sqrt(sol.const[0]))))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
def test_t13(const):
    def odefun(y, _, k):
        return 2 * y[1], 2 * ((y[0] - k[0] * np.pi**2 * np.cos(np.pi * y[2]) -
                               np.cos(np.pi * y[2])) / k[0]), 2

    def odejac(y, _, k):
        df_dy = np.array([[0, 2, 0],
                          [
                              2 / k[0], 0,
                              (2 * (np.pi * np.sin(np.pi * y[2]) +
                                    k[0] * np.pi**3 * np.sin(np.pi * y[2]))) /
                              k[0]
                          ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0], yf[0] + 1, y0[2] + 1

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[-1, 0, -1], [0, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.cos(np.pi * sol.y[:, 2]) + np.exp(
        -(1 + sol.y[:, 2]) / np.sqrt(sol.const[0]))
    e2 = -np.exp(-(sol.y[:, 2] + 1) / np.sqrt(sol.const[0])) / np.sqrt(
        sol.const[0]) - np.pi * np.sin(np.pi * sol.y[:, 2])
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
def test_t8(const):
    def odefun(y, _, k):
        return y[1], (-y[1] / k[0]), 1

    def odejac(_, __, k):
        df_dy = np.array([[0, 1, 0], [0, -1 / k[0], 0], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0] - 1, yf[0] - 2, y0[2]

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[1, 0, -1], [2, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = (2 - np.exp(-1 / sol.const[0]) - np.exp(
        -sol.y[:, 2] / sol.const[0])) / (1 - np.exp(-1 / sol.const[0]))
    e2 = -1 / (sol.const[0] * np.exp(sol.y[:, 2] / sol.const[0]) *
               (1 / np.exp(1 / sol.const[0]) - 1))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
def test_t9(const):
    def odefun(y, _, k):
        return 2 * y[1], 2 * (-(4 * y[2] * y[1] + 2 * y[0]) /
                              (k[0] + y[2]**2)), 2

    def odejac(y, _, k):
        df_dy = np.array(
            [[0, 2, 0],
             [
                 -4 / (y[2]**2 + k[0]), -(8 * y[2]) / (y[2]**2 + k[0]),
                 (4 * y[2] * (2 * y[0] + 4 * y[1] * y[2])) /
                 (y[2]**2 + k[0])**2 - (8 * y[1]) / (y[2]**2 + k[0])
             ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, k):
        return y0[0] - 1 / (1 + k[0]), yf[0] - 1 / (1 + k[0]), y0[2] + 1

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[1 / (1 + const), 0, -1], [1 / (1 + const), 1, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = 1 / (sol.const[0] + sol.y[:, 2]**2)
    e2 = -(2 * sol.y[:, 2]) / (sol.y[:, 2]**2 + sol.const[0])**2
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
    def inv_map(self, sol: Solution) -> Solution:
        sol.dual = sol.y[:, self.costate_idxs]
        sol.y = np.delete(sol.y, self.costate_idxs, axis=1)
        sol.nondynamical_parameters = np.delete(sol.nondynamical_parameters,
                                                self.constraint_adjoints_idxs)

        return sol
def test_t4(const):
    def odefun(y, _, k):
        return 2 * y[1], 2 * (((1 + k[0]) * y[0] - y[1]) / k[0]), 2

    def odejac(_, __, k):
        df_dy = np.array([[0, 2,
                           0], [2 * (1 + k[0]) / k[0], 2 * (-1) / k[0], 0],
                          [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, k):
        return y0[0] - 1 - np.exp(-2), yf[0] - 1 - np.exp(
            -2 * (1 + k[0]) / k[0]), y0[2] + 1

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.exp(sol.y[:, 2] - 1) + np.exp(-((1 + sol.const[0]) *
                                            (1 + sol.y[:, 2]) / sol.const[0]))
    e2 = np.exp(sol.y[:, 2] - 1) - (sol.const[0] + 1) / (sol.const[0] * np.exp(
        (sol.y[:, 2] + 1) * (sol.const[0] + 1) / sol.const[0]))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
def test_t33(const):
    def odefun(y, _, k):
        return y[1], (y[0] * y[3] - y[2] * y[1]) / k[0], y[3], y[4], y[5], (
            -y[2] * y[5] - y[0] * y[1]) / k[0]

    def odejac(y, _, k):
        df_dy = np.array(
            [[0, 1, 0, 0, 0, 0],
             [y[3] / k[0], -y[2] / k[0], -y[1] / k[0], y[0] / k[0], 0, 0],
             [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1],
             [-y[1] / k[0], -y[0] / k[0], -y[5] / k[0], 0, 0, -y[2] / k[0]]])
        df_dp = np.empty((6, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0] + 1, y0[2], y0[3], yf[0] - 1, yf[2], yf[3]

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    sol = Trajectory()
    sol.t = np.linspace(0, 1, 2)
    sol.y = np.array([[-1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0]])
    sol.const = np.array([const])
    sol = algo.solve(sol)['sol']

    assert sol.converged
def test_t31(const):
    def odefun(y, _, k):
        return np.sin(y[1]), y[2], -y[3] / k[0], \
               ((y[0]-1) * np.cos(y[1]) - y[2] / np.cos(y[1]) - k[0] * y[3] * np.tan(y[1])) / k[0]

    def odejac(y, _, k):
        df_dy = np.array([[0, np.cos(y[1]), 0, 0], [0, 0, 1, 0],
                          [0, 0, 0, -1 / k[0]],
                          [
                              np.cos(y[1]) / k[0],
                              -(np.sin(y[1]) * (y[0] - 1) + k[0] * y[3] *
                                (np.tan(y[1])**2 + 1) +
                                (y[2] * np.sin(y[1])) / np.cos(y[1])**2) /
                              k[0], -1 / (k[0] * np.cos(y[1])), -np.tan(y[1])
                          ]])
        df_dp = np.empty((4, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0], y0[2], yf[0], yf[2]

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    sol = Trajectory()
    sol.t = np.linspace(0, 1, 2)
    sol.y = np.array([[0, 0, 0, 0], [0, 0, 0, 0]])
    sol.const = np.array([const])
    sol = algo.solve(sol)['sol']

    assert sol.converged
def test_t21(const):
    def odefun(y, _, k):
        return y[1], (y[0] *
                      (1 + y[0]) - np.exp(-2 * y[2] / np.sqrt(k[0]))) / k[0], 1

    def odejac(y, _, k):
        df_dy = np.array([[0, 1, 0],
                          [(2 * y[0] + 1) / k[0], 0,
                           (2 * np.exp(-(2 * y[2]) / np.sqrt(k[0]))) /
                           k[0]**(3 / 2)], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, k):
        return y0[0] - 1, yf[0] - np.exp(-1 / np.sqrt(k[0])), y0[2]

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0, 0], [0, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.exp(-sol.y[:, 2] / np.sqrt(const))
    e2 = -np.exp(-sol.y[:, 2] / np.sqrt(const)) / np.sqrt(const)
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
 def map(self, sol: Solution) -> Solution:
     idx_u_list = []
     for idx_u, (idx_y,
                 u) in enumerate(sorted(zip(self.control_idxs, sol.u.T))):
         sol.y = np.insert(sol.y, idx_y, u, axis=1)
         idx_u_list.append(idx_u)
     sol.u = np.delete(sol.u, idx_u_list, axis=1)
     return sol
    def inv_map(self, sol: Solution) -> Solution:
        if self.ind_state_idx is None:
            self.ind_state_idx = np.shape(sol.y)[1] - 1

        sol.t = sol.y[:, self.ind_state_idx]
        sol.y = np.delete(sol.y, self.ind_state_idx, axis=1)

        sol.dual_t = sol.dual[:, self.ind_state_idx]
        sol.dual = np.delete(sol.dual, self.ind_state_idx, axis=1)

        return sol
    def inv_map(self, sol: Solution) -> Solution:
        sol = copy.deepcopy(sol)

        if self.delta_ind_idx is None:
            self.delta_ind_idx = np.shape(sol.dynamical_parameters)[0] - 1

        sol.t = sol.t * sol.dynamical_parameters[self.delta_ind_idx]
        sol.dynamical_parameters = np.delete(sol.dynamical_parameters,
                                             self.delta_ind_idx)

        return sol
    def map(self, sol: Solution) -> Solution:
        if self.ind_state_idx is None:
            self.ind_state_idx = np.shape(sol.y)[1]

        if len(sol.dual_t) == 0:
            sol.dual_t = np.zeros_like(sol.t)

        sol.y = np.insert(sol.y, self.ind_state_idx, sol.t, axis=1)
        sol.dual = np.insert(sol.dual, self.ind_state_idx, sol.dual_t, axis=1)

        return sol
    def inv_map(self, sol: Solution, retain_dual=True) -> Solution:

        if not retain_dual:
            sol.dual = empty_array

        sol.nondynamical_parameters = empty_array

        sol.cost = self.compute_cost(sol.t, sol.y, sol.q, sol.u,
                                     sol.dynamical_parameters, sol.const)

        return sol
Пример #23
0
def test_integrate_quads():
    # Test a 1-dim x and 1-dim q
    t = np.linspace(0, 10, 100)
    y1 = np.sin(t)

    def quadfun(_, y):
        return y[0]

    gam = Trajectory(t, y1)
    assert integrate_quads(quadfun, np.array([0, 1 * np.pi]) + 0, gam) - 2 < 1e-3
    assert integrate_quads(quadfun, np.array([0, 2 * np.pi]) + 0, gam) < 1e-3
    assert integrate_quads(quadfun, np.array([0, 2 * np.pi]) + 1, gam) < 1e-3
    assert integrate_quads(quadfun, np.array([0, 2 * np.pi]) + 2, gam) < 1e-3
    assert integrate_quads(quadfun, np.array([0, 2 * np.pi]) + 3, gam) < 1e-3

    # Test a 2-dim x and 1-dim q
    t = np.linspace(0, 10, 100)
    y1 = np.sin(t)
    y2 = np.cos(t)

    def quadfun(_, y):
        return y[0]*y[1]

    gam = Trajectory(t, np.vstack((y1, y2)).T)
    assert integrate_quads(quadfun, np.array([0, 1 * np.pi]) + 0, gam) - np.pi/2 < 1e-3
    assert integrate_quads(quadfun, np.array([0, 2 * np.pi]) + 0, gam) - np.pi < 1e-3

    # Test a 1-dim x and 2-dim q
    t = np.linspace(0, 10, 100)
    y1 = np.sin(t)

    def quadfun(_, y):
        return y[0], y[0]**2

    gam = Trajectory(t, y1)
    assert integrate_quads(quadfun, np.array([0, 1 * np.pi]) + 0, gam)[0] - 2 < 1e-3
    assert integrate_quads(quadfun, np.array([0, 1 * np.pi]) + 0, gam)[1] - np.pi/2 < 1e-3

    # Test a 2-dim x and 2-dim q
    t = np.linspace(0, 10, 100)
    y1 = np.sin(t)
    y2 = np.cos(t)

    def quadfun(_, y):
        return y[0], y[1]

    gam = Trajectory(t, np.vstack((y1, y2)).T)
    assert len(integrate_quads(quadfun, np.array([0, 2 * np.pi]) + 2, gam)) == 2
    assert integrate_quads(quadfun, np.array([0, 2 * np.pi]) + 2, gam)[0] < 1e-3
    assert integrate_quads(quadfun, np.array([0, 2 * np.pi]) + 2, gam)[1] < 1e-3
    assert integrate_quads(quadfun, np.array([0, 1 * np.pi]) + 0, gam)[0] - 2 < 1e-3
    assert integrate_quads(quadfun, np.array([0, 1 * np.pi]) + 0, gam)[1] < 1e-3
    def map(self, sol: Solution) -> Solution:
        sol = copy.deepcopy(sol)

        if self.delta_ind_idx is None:
            self.delta_ind_idx = np.shape(sol.dynamical_parameters)[0]

        delta_t = sol.t[-1] - sol.t[0]
        sol.dynamical_parameters = np.insert(sol.dynamical_parameters,
                                             self.delta_ind_idx, delta_t)

        sol.t = (sol.t - sol.t[0]) / delta_t

        return sol
    def map(self, sol: Solution, lam=empty_array, nu=empty_array) -> Solution:

        # sol.dual = lam
        if len(sol.nondynamical_parameters) == 0:
            sol.nondynamical_parameters = np.ones(self.nu_len)

        return sol
def test_t7(const):
    def odefun(y, _, k):
        return 2 * y[1], 2 * (
            (-y[2] * y[1] + y[0] -
             (1.0e0 + k[0] * np.pi**2) * np.cos(np.pi * y[2]) -
             np.pi * y[2] * np.sin(np.pi * y[2])) / k[0]), 2

    def odejac(y, _, k):
        df_dy = np.array(
            [[0, 2, 0],
             [
                 2 / k[0], -2 * y[2] / k[0],
                 -(2 * (y[1] + np.pi * np.sin(np.pi * y[2]) + np.pi**2 * y[2] *
                        np.cos(np.pi * y[2]) - np.pi * np.sin(np.pi * y[2]) *
                        (k[0] * np.pi**2 + 1))) / k[0]
             ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0] + 1, yf[0] - 1, y0[2] + 1

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[-1, 0, -1], [1, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.cos(np.pi * sol.y[:, 2]) + sol.y[:, 2] + (
        sol.y[:, 2] * erf(sol.y[:, 2] / np.sqrt(2.0e0 * sol.const[0])) +
        np.sqrt(2 * sol.const[0] / np.pi) * np.exp(-sol.y[:, 2]**2 /
                                                   (2 * sol.const[0]))
    ) / (erf(1.0e0 / np.sqrt(2 * sol.const[0])) +
         np.sqrt(2.0e0 * sol.const[0] / np.pi) * np.exp(-1 /
                                                        (2 * sol.const[0])))
    e2 = erf((np.sqrt(2) * sol.y[:, 2]) / (2 * np.sqrt(sol.const[0]))) / (
        erf(np.sqrt(2) / (2 * np.sqrt(sol.const[0]))) +
        (np.sqrt(2) * np.sqrt(sol.const[0])) /
        (np.sqrt(np.pi) * np.exp(1 / (2 * sol.const[0])))) - np.pi * np.sin(
            np.pi * sol.y[:, 2]) + 1
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Пример #27
0
def test_t23(algorithm, const):
    def odefun(y, _, k):
        return y[1], 1 / k[0] * np.sinh(y[0] / k[0])

    def odejac(y, _, k):
        df_dy = np.array([[0, 1], [np.cosh(y[0] / k[0]) / k[0]**2, 0]])
        df_dp = np.empty((2, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0], yf[0] - 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0], [1, 0]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    assert sol.converged
def test_t15(const):
    def odefun(y, _, k):
        return 2 * y[1], 2 * (y[2] * y[0] / k[0]), 2

    def odejac(y, _, k):
        df_dy = np.array([[0, 2, 0], [2 * (y[2] / k[0]), 0, 2 * (y[0] / k[0])],
                          [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0] - 1, yf[0] - 1, y0[2] + 1

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[1, 0, -1], [0, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']
    assert sol.converged
Пример #29
0
def test_t29(algorithm, const):
    def odefun(y, _, k):
        return y[1], (y[0] - y[0] * y[1]) / k[0]

    def odejac(y, _, k):
        df_dy = np.array([[0, 1], [(1 - y[1]) / k[0], -y[0] / k[0]]])
        df_dp = np.empty((2, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0], yf[0] - 3 / 2

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=1)
    algo.set_derivative_jacobian(odejac)
    sol = Trajectory()
    sol.t = np.linspace(0, 1, 2)
    sol.y = np.array([[0, 0], [3 / 2, 0]])
    sol.const = np.array([const])
    sol = algo.solve(sol)['sol']

    assert sol.converged
def test_t22(const):
    def odefun(y, _, k):
        return y[1], -(y[1] + y[0] * y[0]) / k[0]

    def odejac(y, _, k):
        df_dy = np.array([[0, 1], [-(2 * y[0]) / k[0], -1 / k[0]]])
        df_dp = np.empty((2, 0))
        return df_dy, df_dp

    def bcfun(y0, yf, _, __, ___):
        return y0[0], yf[0] - 1 / 2

    algo = SPBVP(odefun, None, bcfun)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0], [0, 0]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    assert sol.converged