Пример #1
0
def run(benchmark,
        solver_names,
        forced_solvers,
        dataset_names,
        objective_filters,
        max_runs,
        n_repetitions,
        timeout,
        recreate=False,
        plot=True,
        pdb=False,
        env_name='False'):

    # Check that the dataset/solver patterns match actual dataset
    benchmark = Benchmark(benchmark)
    benchmark.validate_dataset_patterns(dataset_names)
    benchmark.validate_solver_patterns(solver_names + forced_solvers)

    # If env_name is False, the flag `--local` has been used (default) so
    # run in the current environement.
    if env_name == 'False':
        run_benchmark(benchmark,
                      solver_names,
                      forced_solvers,
                      dataset_names=dataset_names,
                      objective_filters=objective_filters,
                      max_runs=max_runs,
                      n_repetitions=n_repetitions,
                      timeout=timeout,
                      plot_result=plot,
                      pdb=pdb)
        return

    # If env_name is True, the flag `--env` has been used. Create a conda env
    # specific to the benchmark. Else, use the <env_name> value.
    if env_name == 'True':
        env_name = f"benchopt_{benchmark.name}"
    create_conda_env(env_name, recreate=recreate)

    # installed required datasets
    benchmark.install_required_datasets(dataset_names, env_name=env_name)

    # Get the solvers and install them
    benchmark.install_required_solvers(solver_names,
                                       forced_solvers=forced_solvers,
                                       env_name=env_name)

    # run the command in the conda env
    solvers_option = ' '.join(['-s ' + s for s in solver_names])
    forced_solvers_option = ' '.join(['-f ' + s for s in forced_solvers])
    datasets_option = ' '.join(['-d ' + d for d in dataset_names])
    objective_option = ' '.join(['-p ' + p for p in objective_filters])
    cmd = (rf"benchopt run --local {benchmark.benchmark_dir} "
           rf"--n-repetitions {n_repetitions} "
           rf"--max-runs {max_runs} --timeout {timeout} "
           rf"{solvers_option} {forced_solvers_option} "
           rf"{datasets_option} {objective_option} "
           rf"{'--plot' if plot else '--no-plot'} "
           rf"{'--pdb' if pdb else ''} ".replace('\\', '\\\\'))
    raise SystemExit(
        _run_shell_in_conda_env(cmd, env_name=env_name, capture_stdout=False)
        != 0)
Пример #2
0
def install(benchmark, solver_names, dataset_names, force=False,
            recreate=False, env_name='False', confirm=False):

    # Check that the dataset/solver patterns match actual dataset
    benchmark = Benchmark(benchmark)
    print(f"Installing '{benchmark.name}' requirements")
    benchmark.validate_dataset_patterns(dataset_names)
    benchmark.validate_solver_patterns(solver_names)

    # Get a list of all conda envs
    default_conda_env, conda_envs = list_conda_envs()

    # If env_name is False (default), installation in the current environement.
    if env_name == 'False':
        env_name = None
        # incompatible with the 'recreate' flag to avoid messing with the
        # user environement
        if recreate:
            msg = "Cannot recreate conda env without using options " + \
                "'-e/--env' or '--env-name'."
            raise RuntimeError(msg)

        # check if any current conda environment
        if default_conda_env is not None:
            # ask for user confirmation to install in current conda env
            if not confirm:
                click.confirm(
                    f"Install in the current env '{default_conda_env}'?",
                    abort=True
                )
        else:
            raise RuntimeError("No conda environment is activated.")
    else:
        # If env_name is True, the flag `--env` has been used. Create a conda
        # env specific to the benchmark. Else, use the <env_name> value.
        if env_name == 'True':
            env_name = f"benchopt_{benchmark.name}"
        else:
            # check provided <env_name>
            # (to avoid empty name like `--env-name ""`)
            if len(env_name) == 0:
                raise RuntimeError("Empty environment name.")
            # avoid recreating 'base' conda env`
            if env_name == 'base' and recreate:
                raise RuntimeError(
                    "Impossible to recreate 'base' conda environment."
                )

        # create environment if necessary
        create_conda_env(env_name, recreate=recreate)

    # If force is True (default is False), it forces the reinstallation of
    # selected solvers (all solvers from the benchmark by default)
    forced_solvers = ()
    if force:
        if len(solver_names) > 0:
            forced_solvers = solver_names
        else:
            forced_solvers = benchmark.list_benchmark_solver_names()
    # same for datasets
    forced_datasets = ()
    if force:
        if len(dataset_names) > 0:
            forced_datasets = dataset_names
        else:
            forced_datasets = benchmark.list_benchmark_dataset_names()

    # install required datasets
    print("# Datasets", flush=True)
    benchmark.install_required_datasets(
        dataset_names, forced_datasets=forced_datasets, env_name=env_name
    )

    # install required solvers
    print("# Solvers", flush=True)
    benchmark.install_required_solvers(
        solver_names, forced_solvers=forced_solvers, env_name=env_name
    )