Пример #1
0
def test_random_parzen_estimators():
    minimize(
        function_to_optimize,
        optimization_problem,
        optimizer_type="parzen_estimator",
        number_of_evaluation=35,
    )
Пример #2
0
def test_passing_optimizer_directly():
    minimize(
        function_to_optimize,
        optimization_problem,
        optimizer_type=RandomOptimizer,
        number_of_evaluation=5,
    )
Пример #3
0
def test_suggestions_with_global_seed_reset():
    suggestions = []

    def eval_(x: float) -> float:
        suggestions.append(x)
        np.random.seed(0)
        return 1.0

    params = [{
        "name": "x",
        "category": "uniform",
        "search_space": {
            "low": 0,
            "high": 1
        }
    }]
    minimize(eval_,
             params,
             optimizer_type="parzen_estimator",
             number_of_evaluation=5)

    assert len(suggestions) == len(set(suggestions))
Пример #4
0
def test_random_uniform():

    optimization_problem = [{
        "name": "x",
        "category": "uniform",
        "search_space": {
            "low": 0,
            "high": np.pi
        }
    }]

    best_sample = minimize(f,
                           optimization_problem,
                           optimizer_type="random",
                           number_of_evaluation=100)

    assert np.abs(best_sample["x"] - (np.pi / 2)) < 0.1
Пример #5
0
def test_random_uniform():
    np.random.seed(0)
    minimize(function_to_optimize,
             optimization_problem,
             optimizer_type="random",
             number_of_evaluation=5)