Пример #1
0
    def optimizer_fn(param_group, max_grad_norm=None):
        group0 = dict(params=[], weight_decay_rate=args.weight_decay, names=[])
        group1 = dict(params=[], weight_decay_rate=0.00, names=[])
        for (n, p) in param_group:
            if not any(nd in n for nd in no_decay):
                group0['params'].append(p)
                group0['names'].append(n)
            else:
                group1['params'].append(p)
                group1['names'].append(n)

        optimizer_grouped_parameters = [group0, group1]

        optimizer = BertAdam(
            optimizer_grouped_parameters,
            lr=args.learning_rate,
            b1=args.adam_beta1,
            b2=args.adam_beta2,
            v1=args.qhadam_v1,
            v2=args.qhadam_v2,
            lr_ends=args.lr_schedule_ends,
            warmup=args.warmup_proportion if args.warmup_proportion < 1 else
            args.warmup_proportion / training_steps,
            t_total=training_steps,
            schedule=args.lr_schedule,
            max_grad_norm=args.max_grad_norm
            if max_grad_norm is None else max_grad_norm,
            global_grad_norm=args.global_grad_norm,
            init_spec=init_spec,
            weight_decay_rate=args.weight_decay)
        return optimizer
Пример #2
0
            'weight_decay_rate':
            args.weight_decay_rate
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay_rate':
            0.0
        }]

        num_train_steps = int(
            len(train_iter.dataset) / args.batch_size *
            device_num) * args.num_epochs
        num_train_steps = num_train_steps if args.t_total else -1

        optimizer = BertAdam(params=optimizer_grouped_parameters,
                             lr=args.bert_lr,
                             warmup=args.warmup,
                             t_total=num_train_steps)

        for epoch in range(1, args.num_epochs + 1):
            logger.info(
                "==========epoch {} fine tune start==========".format(epoch))
            logger.info('train examples {}'.format(len(train_iter.dataset)))
            logger.info('train batch size {}'.format(args.batch_size))
            logger.info('train lr {}'.format(optimizer.get_lr()[0]))
            writer.add_scalar('lr', optimizer.get_lr()[0], epoch)
            train(model, train_iter, optimizer, epoch)
            logger.info(
                "==========epoch {} fine tune end==========".format(epoch))
            logger.info(
                "==========epoch {} eval start==========".format(epoch))
            evaluate(model, eval_iter, epoch)
Пример #3
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--negative_weight", default=1., type=float)
    parser.add_argument("--neutral_words_file", default='data/identity.csv')

    # if true, use test data instead of val data
    parser.add_argument("--test", action='store_true')

    # Explanation specific arguments below

    # whether run explanation algorithms
    parser.add_argument("--explain",
                        action='store_true',
                        help='if true, explain test set predictions')
    parser.add_argument("--debug", action='store_true')

    # which algorithm to run
    parser.add_argument("--algo", choices=['soc'])

    # the output filename without postfix
    parser.add_argument("--output_filename", default='temp.tmp')

    # see utils/config.py
    parser.add_argument("--use_padding_variant", action='store_true')
    parser.add_argument("--mask_outside_nb", action='store_true')
    parser.add_argument("--nb_range", type=int)
    parser.add_argument("--sample_n", type=int)

    # whether use explanation regularization
    parser.add_argument("--reg_explanations", action='store_true')
    parser.add_argument("--reg_strength", type=float)
    parser.add_argument("--reg_mse", action='store_true')

    # whether discard other neutral words during regularization. default: False
    parser.add_argument("--discard_other_nw",
                        action='store_false',
                        dest='keep_other_nw')

    # whether remove neutral words when loading datasets
    parser.add_argument("--remove_nw", action='store_true')

    # if true, generate hierarchical explanations instead of word level outputs.
    # Only useful when the --explain flag is also added.
    parser.add_argument("--hiex", action='store_true')
    parser.add_argument("--hiex_tree_height", default=5, type=int)

    # whether add the sentence itself to the sample set in SOC
    parser.add_argument("--hiex_add_itself", action='store_true')

    # the directory where the lm is stored
    parser.add_argument("--lm_dir", default='runs/lm')

    # if configured, only generate explanations for instances with given line numbers
    parser.add_argument("--hiex_idxs", default=None)
    # if true, use absolute values of explanations for hierarchical clustering
    parser.add_argument("--hiex_abs", action='store_true')

    # if either of the two is true, only generate explanations for positive / negative instances
    parser.add_argument("--only_positive", action='store_true')
    parser.add_argument("--only_negative", action='store_true')

    # stop after generating x explanation
    parser.add_argument("--stop", default=100000000, type=int)

    # early stopping with decreasing learning rate. 0: direct exit when validation F1 decreases
    parser.add_argument("--early_stop", default=5, type=int)

    # other external arguments originally here in pytorch_transformers

    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--validate_steps",
                        default=200,
                        type=int,
                        help="validate once for how many steps")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    combine_args(configs, args)
    args = configs

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        'gab': GabProcessor,
        'ws': WSProcessor,
        'nyt': NytProcessor,
        'MT': MTProcessor,
        #'multi-label': multilabel_Processor,
    }

    output_modes = {
        'gab': 'classification',
        'ws': 'classification',
        'nyt': 'classification'
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    #if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
    #    raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # save configs
    f = open(os.path.join(args.output_dir, 'args.json'), 'w')
    json.dump(args.__dict__, f, indent=4)
    f.close()

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)
    processor = processors[task_name](configs, tokenizer=tokenizer)
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    if args.do_train:
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model, cache_dir=cache_dir, num_labels=num_labels)

    else:
        model = BertForSequenceClassification.from_pretrained(
            args.output_dir, num_labels=num_labels)
    model.to(device)

    if args.fp16:
        model.half()

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    # elif n_gpu > 1:
    #     model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps)

    else:
        if args.do_train:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss, tr_reg_loss = 0, 0
    tr_reg_cnt = 0
    epoch = -1
    val_best_f1 = -1
    val_best_loss = 1e10
    early_stop_countdown = args.early_stop

    if args.reg_explanations:
        train_lm_dataloder = processor.get_dataloader('train',
                                                      configs.train_batch_size)
        dev_lm_dataloader = processor.get_dataloader('dev',
                                                     configs.train_batch_size)
        explainer = SamplingAndOcclusionExplain(
            model,
            configs,
            tokenizer,
            device=device,
            vocab=tokenizer.vocab,
            train_dataloader=train_lm_dataloder,
            dev_dataloader=dev_lm_dataloader,
            lm_dir=args.lm_dir,
            output_path=os.path.join(configs.output_dir,
                                     configs.output_filename),
        )
    else:
        explainer = None

    if args.do_train:
        epoch = 0
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, output_mode,
                                                      configs)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        class_weight = torch.FloatTensor([args.negative_weight, 1]).to(device)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss(class_weight)
                    loss = loss_fct(logits.view(-1, num_labels),
                                    label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                tr_loss += loss.item()
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                # regularize explanations
                # NOTE: backward performed inside this function to prevent OOM

                if args.reg_explanations:
                    reg_loss, reg_cnt = explainer.compute_explanation_loss(
                        input_ids,
                        input_mask,
                        segment_ids,
                        label_ids,
                        do_backprop=True)
                    tr_reg_loss += reg_loss  # float
                    tr_reg_cnt += reg_cnt

                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.validate_steps == 0:
                    val_result = validate(args, model, processor, tokenizer,
                                          output_mode, label_list, device,
                                          num_labels, task_name, tr_loss,
                                          global_step, epoch, explainer)
                    val_acc, val_f1 = val_result['acc'], val_result['f1']
                    if val_f1 > val_best_f1:
                        val_best_f1 = val_f1
                        if args.local_rank == -1 or torch.distributed.get_rank(
                        ) == 0:
                            save_model(args, model, tokenizer, num_labels)
                    else:
                        # halve the learning rate
                        for param_group in optimizer.param_groups:
                            param_group['lr'] *= 0.5
                        early_stop_countdown -= 1
                        logger.info(
                            "Reducing learning rate... Early stop countdown %d"
                            % early_stop_countdown)
                    if early_stop_countdown < 0:
                        break
            if early_stop_countdown < 0:
                break
            epoch += 1

            # training finish ############################

    # if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
    #     if not args.explain:
    #         args.test = True
    #         validate(args, model, processor, tokenizer, output_mode, label_list, device, num_labels,
    #                  task_name, tr_loss, global_step=0, epoch=-1, explainer=explainer)
    #     else:
    #         args.test = True
    #         explain(args, model, processor, tokenizer, output_mode, label_list, device)
    if not args.explain:
        args.test = True
        print('--Test_args.test: %s' % str(args.test))  #Test_args.test: True
        validate(args,
                 model,
                 processor,
                 tokenizer,
                 output_mode,
                 label_list,
                 device,
                 num_labels,
                 task_name,
                 tr_loss,
                 global_step=888,
                 epoch=-1,
                 explainer=explainer)
        args.test = False
    else:
        print('--Test_args.test: %s' % str(args.test))  # Test_args.test: True
        args.test = True
        explain(args, model, processor, tokenizer, output_mode, label_list,
                device)
        args.test = False
Пример #4
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--pregenerated_data', type=Path, required=True)
    parser.add_argument('--output_dir', type=Path, required=True)
    parser.add_argument(
        "--bert_model",
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument("--do_lower_case", action="store_true")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )

    parser.add_argument("--epochs",
                        type=int,
                        default=3,
                        help="Number of epochs to train for")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--log_every',
                        type=int,
                        default=100,
                        help="Log every X batch")
    parser.add_argument("--mlm_only",
                        action='store_true',
                        help="Only use MLM objective")
    args = parser.parse_args()

    assert args.pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"

    if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
        print(
            f"Output directory ({args.output_dir}) already exists and is not empty!"
        )
    args.output_dir.mkdir(parents=True, exist_ok=True)

    logger = util.get_logger(f'{args.output_dir}/exp.txt')
    for key, value in vars(args).items():
        logger.info('command line argument: %s - %r', key, value)

    samples_per_epoch = []
    for i in range(args.epochs):
        epoch_file = args.pregenerated_data / f"epoch_{i}.json"
        metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
        if epoch_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch.append(metrics['num_training_examples'])
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            num_data_epochs = i
            break
    else:
        num_data_epochs = args.epochs

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    total_train_examples = 0
    for i in range(args.epochs):
        # The modulo takes into account the fact that we may loop over limited epochs of data
        total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )

    # Prepare model
    if args.mlm_only:
        model = BertForMaskedLM.from_pretrained(args.bert_model)
    else:
        model = BertForPreTraining.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    if args.mlm_only:
        param_optimizer = [
            x for x in param_optimizer if 'bert.pooler' not in x[0]
        ]
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)
    model.train()
    for epoch in range(args.epochs):
        epoch_dataset = PregeneratedDataset(
            logger=logger,
            epoch=epoch,
            training_path=args.pregenerated_data,
            tokenizer=tokenizer,
            num_data_epochs=num_data_epochs,
            mlm_only=args.mlm_only)
        if args.local_rank == -1:
            train_sampler = RandomSampler(epoch_dataset)
        else:
            train_sampler = DistributedSampler(epoch_dataset)
        train_dataloader = DataLoader(epoch_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        losses = []
        with tqdm(total=len(train_dataloader), desc=f"Epoch {epoch}") as pbar:
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                if args.mlm_only:
                    input_ids, input_mask, segment_ids, lm_label_ids = batch
                    loss = model(input_ids, segment_ids, input_mask,
                                 lm_label_ids)
                else:
                    input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                    loss = model(input_ids, segment_ids, input_mask,
                                 lm_label_ids, is_next)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                pbar.update(1)
                mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps
                pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
                losses.append(loss.item())
                if step % args.log_every == 0:
                    logger.info(
                        f"loss at ep {epoch} batch {step}/{len(train_dataloader)} is {np.mean(losses):.5f}"
                    )
                    losses = []
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

        # Save a trained model
        logger.info("** ** * Saving fine-tuned model ** ** * ")
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = args.output_dir / f"epoch{epoch}_pytorch_model.bin"
        torch.save(model_to_save.state_dict(), str(output_model_file))
Пример #5
0
    def __init__(self, opt, state_dict=None, num_train_step=-1):
        self.config = opt
        self.updates = state_dict[
            'updates'] if state_dict and 'updates' in state_dict else 0
        self.train_loss = AverageMeter()
        self.network = SANBertNetwork(opt)

        # pdb.set_trace()
        if state_dict:
            new_state = set(self.network.state_dict().keys())
            # change to a safer approach
            old_keys = [k for k in state_dict['state'].keys()]
            for k in old_keys:
                if k not in new_state:
                    print('deleting state:', k)
                    del state_dict['state'][k]
            for k, v in list(self.network.state_dict().items()):
                if k not in state_dict['state']:
                    print('adding missing state:', k)
                    state_dict['state'][k] = v
            # pdb.set_trace()
            self.network.load_state_dict(state_dict['state'])
        self.mnetwork = nn.DataParallel(
            self.network) if opt['multi_gpu_on'] else self.network
        self.total_param = sum([
            p.nelement() for p in self.network.parameters() if p.requires_grad
        ])

        no_decay = [
            'bias', 'gamma', 'beta', 'LayerNorm.bias', 'LayerNorm.weight'
        ]
        optimizer_parameters = [{
            'params': [
                p for n, p in self.network.named_parameters()
                if n not in no_decay
            ],
            'weight_decay_rate':
            0.01
        }, {
            'params':
            [p for n, p in self.network.named_parameters() if n in no_decay],
            'weight_decay_rate':
            0.0
        }]
        # note that adamax are modified based on the BERT code
        if opt['optimizer'] == 'sgd':
            self.optimizer = optim.SGD(optimizer_parameters,
                                       opt['learning_rate'],
                                       weight_decay=opt['weight_decay'])

        elif opt['optimizer'] == 'adamax':
            self.optimizer = Adamax(optimizer_parameters,
                                    opt['learning_rate'],
                                    warmup=opt['warmup'],
                                    t_total=num_train_step,
                                    max_grad_norm=opt['grad_clipping'],
                                    schedule=opt['warmup_schedule'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
        elif opt['optimizer'] == 'adadelta':
            self.optimizer = optim.Adadelta(optimizer_parameters,
                                            opt['learning_rate'],
                                            rho=0.95)
        elif opt['optimizer'] == 'adam':
            self.optimizer = Adam(optimizer_parameters,
                                  lr=opt['learning_rate'],
                                  warmup=opt['warmup'],
                                  t_total=num_train_step,
                                  max_grad_norm=opt['grad_clipping'],
                                  schedule=opt['warmup_schedule'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
        else:
            raise RuntimeError('Unsupported optimizer: %s' % opt['optimizer'])

        if state_dict and 'optimizer' in state_dict:
            self.optimizer.load_state_dict(state_dict['optimizer'])

        if opt.get('have_lr_scheduler', False):
            if opt.get('scheduler_type', 'rop') == 'rop':
                self.scheduler = ReduceLROnPlateau(self.optimizer,
                                                   mode='max',
                                                   factor=opt['lr_gamma'],
                                                   patience=3)
            elif opt.get('scheduler_type', 'rop') == 'exp':
                self.scheduler = ExponentialLR(self.optimizer,
                                               gamma=opt.get('lr_gamma', 0.95))
            else:
                milestones = [
                    int(step)
                    for step in opt.get('multi_step_lr', '10,20,30').split(',')
                ]
                self.scheduler = MultiStepLR(self.optimizer,
                                             milestones=milestones,
                                             gamma=opt.get('lr_gamma'))
        else:
            self.scheduler = None
        self.ema = None
        if opt['ema_opt'] > 0:
            self.ema = EMA(self.config['ema_gamma'], self.network)
        self.para_swapped = False
Пример #6
0
class MTDNNModel(object):
    def __init__(self, opt, state_dict=None, num_train_step=-1):
        self.config = opt
        self.updates = state_dict[
            'updates'] if state_dict and 'updates' in state_dict else 0
        self.train_loss = AverageMeter()
        self.network = SANBertNetwork(opt)

        # pdb.set_trace()
        if state_dict:
            new_state = set(self.network.state_dict().keys())
            # change to a safer approach
            old_keys = [k for k in state_dict['state'].keys()]
            for k in old_keys:
                if k not in new_state:
                    print('deleting state:', k)
                    del state_dict['state'][k]
            for k, v in list(self.network.state_dict().items()):
                if k not in state_dict['state']:
                    print('adding missing state:', k)
                    state_dict['state'][k] = v
            # pdb.set_trace()
            self.network.load_state_dict(state_dict['state'])
        self.mnetwork = nn.DataParallel(
            self.network) if opt['multi_gpu_on'] else self.network
        self.total_param = sum([
            p.nelement() for p in self.network.parameters() if p.requires_grad
        ])

        no_decay = [
            'bias', 'gamma', 'beta', 'LayerNorm.bias', 'LayerNorm.weight'
        ]
        optimizer_parameters = [{
            'params': [
                p for n, p in self.network.named_parameters()
                if n not in no_decay
            ],
            'weight_decay_rate':
            0.01
        }, {
            'params':
            [p for n, p in self.network.named_parameters() if n in no_decay],
            'weight_decay_rate':
            0.0
        }]
        # note that adamax are modified based on the BERT code
        if opt['optimizer'] == 'sgd':
            self.optimizer = optim.SGD(optimizer_parameters,
                                       opt['learning_rate'],
                                       weight_decay=opt['weight_decay'])

        elif opt['optimizer'] == 'adamax':
            self.optimizer = Adamax(optimizer_parameters,
                                    opt['learning_rate'],
                                    warmup=opt['warmup'],
                                    t_total=num_train_step,
                                    max_grad_norm=opt['grad_clipping'],
                                    schedule=opt['warmup_schedule'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
        elif opt['optimizer'] == 'adadelta':
            self.optimizer = optim.Adadelta(optimizer_parameters,
                                            opt['learning_rate'],
                                            rho=0.95)
        elif opt['optimizer'] == 'adam':
            self.optimizer = Adam(optimizer_parameters,
                                  lr=opt['learning_rate'],
                                  warmup=opt['warmup'],
                                  t_total=num_train_step,
                                  max_grad_norm=opt['grad_clipping'],
                                  schedule=opt['warmup_schedule'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
        else:
            raise RuntimeError('Unsupported optimizer: %s' % opt['optimizer'])

        if state_dict and 'optimizer' in state_dict:
            self.optimizer.load_state_dict(state_dict['optimizer'])

        if opt.get('have_lr_scheduler', False):
            if opt.get('scheduler_type', 'rop') == 'rop':
                self.scheduler = ReduceLROnPlateau(self.optimizer,
                                                   mode='max',
                                                   factor=opt['lr_gamma'],
                                                   patience=3)
            elif opt.get('scheduler_type', 'rop') == 'exp':
                self.scheduler = ExponentialLR(self.optimizer,
                                               gamma=opt.get('lr_gamma', 0.95))
            else:
                milestones = [
                    int(step)
                    for step in opt.get('multi_step_lr', '10,20,30').split(',')
                ]
                self.scheduler = MultiStepLR(self.optimizer,
                                             milestones=milestones,
                                             gamma=opt.get('lr_gamma'))
        else:
            self.scheduler = None
        self.ema = None
        if opt['ema_opt'] > 0:
            self.ema = EMA(self.config['ema_gamma'], self.network)
        self.para_swapped = False

    def setup_ema(self):
        if self.config['ema_opt']:
            self.ema.setup()

    def update_ema(self):
        if self.config['ema_opt']:
            self.ema.update()

    def eval(self):
        if self.config['ema_opt']:
            self.ema.swap_parameters()
            self.para_swapped = True

    def train(self):
        if self.para_swapped:
            self.ema.swap_parameters()
            self.para_swapped = False

    def update(self, batch_meta, batch_data):
        self.network.train()
        labels = batch_data[batch_meta['label']]
        # print('data size:',batch_data[batch_meta['token_id']].size())
        if batch_meta['pairwise']:
            labels = labels.contiguous().view(-1,
                                              batch_meta['pairwise_size'])[:,
                                                                           0]
        if self.config['cuda']:
            y = Variable(labels.cuda(async=True), requires_grad=False)
        else:
            y = Variable(labels, requires_grad=False)
        task_id = batch_meta['task_id']
        task_type = batch_meta['task_type']
        inputs = batch_data[:batch_meta['input_len']]
        if len(inputs) == 3:
            inputs.append(None)
            inputs.append(None)
        inputs.append(task_id)
        # pdb.set_trace()
        logits = self.mnetwork(*inputs)
        if batch_meta['pairwise']:
            logits = logits.view(-1, batch_meta['pairwise_size'])

        # pdb.set_trace()
        if task_type > 0:
            if self.config['answer_relu']:
                logits = F.relu(logits)
            loss = F.mse_loss(logits.squeeze(1), y)
        else:
            loss = F.cross_entropy(logits, y)

        if self.config['mediqa_pairloss'] is not None and batch_meta[
                'dataset_name'] in mediqa_name_list:
            # print(logits)
            # print(batch_data[batch_meta['rank_label']].size())
            # input('ha')
            logits = logits.squeeze().view(-1, 2)
            # print(batch_data[batch_meta['rank_label']])
            rank_y = batch_data[batch_meta['rank_label']].view(-1, 2)
            # print(rank_y)
            if self.config['mediqa_pairloss'] == 'hinge':
                # print(logits)
                first_logit, second_logit = logits.split(1, dim=1)
                # print(first_logit,second_logit)
                # pdb.set_trace()
                rank_y = (2 * rank_y - 1).to(torch.float32)
                rank_y = rank_y[:, 0]
                pairwise_loss = F.margin_ranking_loss(
                    first_logit.squeeze(1),
                    second_logit.squeeze(1),
                    rank_y,
                    margin=self.config['hinge_lambda'])
            else:
                # pdb.set_trace()
                pairwise_loss = F.cross_entropy(logits, rank_y[:, 1])
            # print('pairwise_loss:',pairwise_loss,'mse loss:',loss)
            loss += pairwise_loss

        self.train_loss.update(loss.item(), logits.size(0))
        self.optimizer.zero_grad()

        loss.backward()
        if self.config['global_grad_clipping'] > 0:
            torch.nn.utils.clip_grad_norm_(self.network.parameters(),
                                           self.config['global_grad_clipping'])
        self.optimizer.step()
        self.updates += 1
        self.update_ema()

    def predict(self, batch_meta, batch_data):
        self.network.eval()
        task_id = batch_meta['task_id']
        task_type = batch_meta['task_type']
        inputs = batch_data[:batch_meta['input_len']]
        if len(inputs) == 3:
            inputs.append(None)
            inputs.append(None)
        inputs.append(task_id)
        score = self.mnetwork(*inputs)
        gold_label = batch_meta['label']
        if batch_meta['pairwise']:
            score = score.contiguous().view(-1, batch_meta['pairwise_size'])
            if task_type < 1:
                score = F.softmax(score, dim=1)
            score = score.data.cpu()
            score = score.numpy()
            predict = np.zeros(score.shape, dtype=int)
            if task_type < 1:
                positive = np.argmax(score, axis=1)
                for idx, pos in enumerate(positive):
                    predict[idx, pos] = 1
            predict = predict.reshape(-1).tolist()
            score = score.reshape(-1).tolist()
            return score, predict, batch_meta['true_label']
        else:
            if task_type < 1:
                score = F.softmax(score, dim=1)
                # pdb.set_trace()
            score = score.data.cpu()
            score = score.numpy()
            if task_type < 1:
                predict = np.argmax(score, axis=1).tolist()
            else:
                predict = np.greater(
                    score,
                    2.0 + self.config['mediqa_score_offset']).astype(int)
                gold_label = np.greater(
                    batch_meta['label'],
                    2.00001 + self.config['mediqa_score_offset']).astype(int)
                predict = predict.reshape(-1).tolist()
                gold_label = gold_label.reshape(-1).tolist()
                # print('predict:',predict,score)

            score = score.reshape(-1).tolist()

        return score, predict, gold_label

    def save(self, filename):
        network_state = dict([(k, v.cpu())
                              for k, v in self.network.state_dict().items()])
        ema_state = dict([
            (k, v.cpu()) for k, v in self.ema.model.state_dict().items()
        ]) if self.ema is not None else dict()
        params = {
            'state': network_state,
            'optimizer': self.optimizer.state_dict(),
            'ema': ema_state,
            'config': self.config,
        }
        torch.save(params, filename)
        logger.info('model saved to {}'.format(filename))

    def cuda(self):
        self.network.cuda()
        if self.config['ema_opt']:
            self.ema.cuda()
Пример #7
0
        [n for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'names':
        [n for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.0
    }]
    args.steps_per_epoch = sum(num_batchs_per_task)
    args.total_steps = args.steps_per_epoch * args.epoch_num
    optimizer = BertAdam(params=optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup,
                         t_total=args.total_steps,
                         max_grad_norm=args.clip_grad,
                         schedule=args.schedule)

    logging.info('Loading graph and entity linking...')
    graph = pickle.load(open('graph/graph.pkl', 'rb'))
    entity_linking = pickle.load(open('graph/entity_linking.pkl', 'rb'))

    if args.do_train_and_eval:
        # Train and evaluate
        best_acc = 0
        for epoch in range(args.epoch_num):
            ## Train
            model.train()
            t = trange(args.steps_per_epoch,
                       desc='Epoch {} -Train'.format(epoch))
Пример #8
0
def main():
    parser = argparse.ArgumentParser(fromfile_prefix_chars="@")

    parser.add_argument("--pregenerated_data",
                        type=Path,
                        required=True,
                        help="The input train corpus.")

    parser.add_argument("--epochs", type=int, required=True)

    parser.add_argument("--bert_model", type=str, required=True)

    parser.add_argument("--bert_config_file",
                        type=str,
                        default="bert_config.json")
    parser.add_argument("--vocab_file", type=str, default="senti_vocab.txt")

    parser.add_argument('--output_dir', type=Path, required=True)

    parser.add_argument("--model_name", type=str, default="senti_base_model")

    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )

    parser.add_argument("--world_size", type=int, default=4)
    parser.add_argument("--start_rank", type=int, default=0)
    parser.add_argument("--server", type=str, default="tcp://127.0.0.1:1234")

    parser.add_argument("--load_model", action="store_true")
    parser.add_argument("--load_model_name", type=str, default="large_model")

    parser.add_argument("--save_step", type=int, default=100000)
    parser.add_argument("--train_batch_size",
                        default=4,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=1e-4,
                        type=float,
                        help="The initial learning rate for Adam.")

    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")

    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    assert args.pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"

    print("local_rank : ", args.local_rank)

    samples_per_epoch = []
    for i in range(args.epochs):
        epoch_file = args.pregenerated_data / f"epoch_{i}.json"
        metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
        if epoch_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch.append(metrics['num_training_examples'])
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            num_data_epochs = i
            break
    else:
        num_data_epochs = args.epochs

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl',
                                             init_method=args.server,
                                             rank=args.local_rank +
                                             args.start_rank,
                                             world_size=args.world_size)
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
        logger.warning(
            f"Output directory ({args.output_dir}) already exists and is not empty!"
        )
    args.output_dir.mkdir(parents=True, exist_ok=True)

    tokenizer = Tokenizer(
        os.path.join(args.bert_model, "senti_vocab.txt"),
        os.path.join(args.bert_model, "RoBERTa_Sentiment_kor"))

    total_train_examples = 0
    for i in range(args.epochs):
        # The modulo takes into account the fact that we may loop over limited epochs of data
        total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]

    num_train_optimization_steps = math.ceil(total_train_examples /
                                             args.train_batch_size /
                                             args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = math.ceil(
            num_train_optimization_steps / torch.distributed.get_world_size())

    # Prepare model
    config = BertConfig.from_json_file(
        os.path.join(args.bert_model, args.bert_config_file))
    logger.info('{}'.format(config))
    ###############################################
    # Load Model
    if args.load_model:
        load_model_name = os.path.join(args.output_dir, args.load_model_name)
        model = BertForPreTraining.from_pretrained(
            args.bert_model,
            state_dict=torch.load(load_model_name)["state_dict"])
    else:
        model = BertForPreTraining(config)
    ###############################################

    if args.fp16:
        model.half()
    model.to(device)

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
            model = DDP(model)

        except ImportError:
            from torch.nn.parallel import DistributedDataParallel as DDP
            model = DDP(model,
                        device_ids=[args.local_rank],
                        output_device=args.local_rank)

    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)
    epoch0 = 0
    global_step = 0
    if args.load_model:
        ###############################################
        # Load Model
        logger.info(f"***** Load Model {args.load_model_name} *****")
        loaded_states = torch.load(os.path.join(args.output_dir,
                                                args.load_model_name),
                                   map_location=device)
        optimizer.load_state_dict(loaded_states["optimizer"])

        regex = re.compile(r'\d+epoch')
        epoch0 = int(
            regex.findall(args.load_model_name)[-1].replace('epoch', ''))
        logger.info('extract {} -> epoch0 : {}'.format(args.load_model_name,
                                                       epoch0))

        ###############################################

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)

    model.train()
    # model.eval()
    for epoch in range(epoch0, args.epochs):
        epoch_dataset = PregeneratedDataset(
            epoch=epoch,
            training_path=args.pregenerated_data,
            tokenizer=tokenizer,
            num_data_epochs=num_data_epochs,
            reduce_memory=args.reduce_memory)
        if args.local_rank == -1:
            train_sampler = RandomSampler(epoch_dataset)
        else:
            train_sampler = DistributedSampler(epoch_dataset)

        train_dataloader = DataLoader(epoch_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        with tqdm(total=len(train_dataloader), desc='training..') as pbar:
            for step, batch in enumerate(train_dataloader):

                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, lm_label_ids = batch

                loss = model(input_ids, input_mask, lm_label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()

                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                pbar.update(1)
                mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps

                if (step + 1) % 50 == 0:
                    pbar.set_description(
                        "Epoch = {}, global_step = {}, loss = {:.5f}".format(
                            epoch, global_step + 1, mean_loss))
                    logger.info(
                        "Epoch = {}, global_step = {}, loss = {:.5f}".format(
                            epoch, global_step + 1, mean_loss))

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if (step + 1) % args.save_step == 0:
                    if args.local_rank == -1 or args.local_rank == 0:
                        logger.info(
                            "** ** * Saving {} - step model ** ** * ".format(
                                global_step))
                        output_model_file = os.path.join(
                            args.output_dir,
                            args.model_name + "_{}step".format(global_step))
                        model_to_save = model.module if hasattr(
                            model, 'module') else model
                        state = {
                            "state_dict": model_to_save.state_dict(),
                            "optimizer": optimizer.state_dict()
                        }
                        torch.save(state, output_model_file)

        if args.local_rank == -1 or args.local_rank == 0:
            logger.info(
                "** ** * Saving {} - epoch model ** ** * ".format(epoch))
            output_model_file = os.path.join(
                args.output_dir,
                args.model_name + "_{}epoch".format(epoch + 1))
            model_to_save = model.module if hasattr(model, 'module') else model
            state = {
                "state_dict": model_to_save.state_dict(),
                "optimizer": optimizer.state_dict()
            }
            torch.save(state, output_model_file)
Пример #9
0
def main(*_, **kwargs):
    use_cuda = torch.cuda.is_available() and kwargs["device"] >= 0
    device = torch.device("cuda:" +
                          str(kwargs["device"]) if use_cuda else "cpu")

    if use_cuda:
        torch.cuda.set_device(device)

    kwargs["use_cuda"] = use_cuda

    neptune.create_experiment(
        name="bert-span-parser",
        upload_source_files=[],
        params={
            k: str(v) if isinstance(v, bool) else v
            for k, v in kwargs.items()
        },
    )

    logger.info("Settings: {}", json.dumps(kwargs,
                                           indent=2,
                                           ensure_ascii=False))

    # For reproducibility
    os.environ["PYTHONHASHSEED"] = str(kwargs["seed"])
    random.seed(kwargs["seed"])
    np.random.seed(kwargs["seed"])
    torch.manual_seed(kwargs["seed"])
    torch.cuda.manual_seed_all(kwargs["seed"])
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    # Prepare and load data
    tokenizer = BertTokenizer.from_pretrained(kwargs["bert_model"],
                                              do_lower_case=False)

    logger.info("Loading data...")

    train_treebank = load_trees(kwargs["train_file"])
    dev_treebank = load_trees(kwargs["dev_file"])
    test_treebank = load_trees(kwargs["test_file"])

    logger.info(
        "Loaded {:,} train, {:,} dev, and {:,} test examples!",
        len(train_treebank),
        len(dev_treebank),
        len(test_treebank),
    )

    logger.info("Preprocessing data...")

    train_parse = [tree.convert() for tree in train_treebank]
    train_sentences = [[(leaf.tag, leaf.word) for leaf in tree.leaves()]
                       for tree in train_parse]
    dev_sentences = [[(leaf.tag, leaf.word) for leaf in tree.leaves()]
                     for tree in dev_treebank]
    test_sentences = [[(leaf.tag, leaf.word) for leaf in tree.leaves()]
                      for tree in test_treebank]

    logger.info("Data preprocessed!")

    logger.info("Preparing data for training...")

    tags = []
    labels = []

    for tree in train_parse:
        nodes = [tree]
        while nodes:
            node = nodes.pop()
            if isinstance(node, InternalParseNode):
                labels.append(node.label)
                nodes.extend(reversed(node.children))
            else:
                tags.append(node.tag)

    tag_encoder = LabelEncoder()
    tag_encoder.fit(tags, reserved_labels=["[PAD]", "[UNK]"])

    label_encoder = LabelEncoder()
    label_encoder.fit(labels, reserved_labels=[()])

    logger.info("Data prepared!")

    # Settings
    num_train_optimization_steps = kwargs["num_epochs"] * (
        (len(train_parse) - 1) // kwargs["batch_size"] + 1)
    kwargs["batch_size"] //= kwargs["gradient_accumulation_steps"]

    logger.info("Creating dataloaders for training...")

    train_dataloader, train_features = create_dataloader(
        sentences=train_sentences,
        batch_size=kwargs["batch_size"],
        tag_encoder=tag_encoder,
        tokenizer=tokenizer,
        is_eval=False,
    )
    dev_dataloader, dev_features = create_dataloader(
        sentences=dev_sentences,
        batch_size=kwargs["batch_size"],
        tag_encoder=tag_encoder,
        tokenizer=tokenizer,
        is_eval=True,
    )
    test_dataloader, test_features = create_dataloader(
        sentences=test_sentences,
        batch_size=kwargs["batch_size"],
        tag_encoder=tag_encoder,
        tokenizer=tokenizer,
        is_eval=True,
    )

    logger.info("Dataloaders created!")

    # Initialize model
    model = ChartParser.from_pretrained(
        kwargs["bert_model"],
        tag_encoder=tag_encoder,
        label_encoder=label_encoder,
        lstm_layers=kwargs["lstm_layers"],
        lstm_dim=kwargs["lstm_dim"],
        tag_embedding_dim=kwargs["tag_embedding_dim"],
        label_hidden_dim=kwargs["label_hidden_dim"],
        dropout_prob=kwargs["dropout_prob"],
    )

    model.to(device)

    # Prepare optimizer
    param_optimizers = list(model.named_parameters())

    if kwargs["freeze_bert"]:
        for p in model.bert.parameters():
            p.requires_grad = False
        param_optimizers = [(n, p) for n, p in param_optimizers
                            if p.requires_grad]

    # Hack to remove pooler, which is not used thus it produce None grad that break apex
    param_optimizers = [n for n in param_optimizers if "pooler" not in n[0]]

    no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in param_optimizers
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.01,
        },
        {
            "params": [
                p for n, p in param_optimizers
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]

    optimizer = BertAdam(
        optimizer_grouped_parameters,
        lr=kwargs["learning_rate"],
        warmup=kwargs["warmup_proportion"],
        t_total=num_train_optimization_steps,
    )

    if kwargs["fp16"]:
        model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

    pretrained_model_file = os.path.join(kwargs["output_dir"], MODEL_FILENAME)

    if kwargs["do_eval"]:
        assert os.path.isfile(
            pretrained_model_file), "Pretrained model file does not exist!"

        logger.info("Loading pretrained model from {}", pretrained_model_file)

        # Load model from file
        params = torch.load(pretrained_model_file, map_location=device)

        model.load_state_dict(params["model"])

        logger.info(
            "Loaded pretrained model (Epoch: {:,}, Fscore: {:.2f})",
            params["epoch"],
            params["fscore"],
        )

        eval_score = eval(
            model=model,
            eval_dataloader=test_dataloader,
            eval_features=test_features,
            eval_trees=test_treebank,
            eval_sentences=test_sentences,
            tag_encoder=tag_encoder,
            device=device,
        )

        neptune.send_metric("test_eval_precision", eval_score.precision())
        neptune.send_metric("test_eval_recall", eval_score.recall())
        neptune.send_metric("test_eval_fscore", eval_score.fscore())

        tqdm.write("Evaluation score: {}".format(str(eval_score)))
    else:
        # Training phase
        global_steps = 0
        start_epoch = 0
        best_dev_fscore = 0

        if kwargs["preload"] or kwargs["resume"]:
            assert os.path.isfile(
                pretrained_model_file), "Pretrained model file does not exist!"

            logger.info("Resuming model from {}", pretrained_model_file)

            # Load model from file
            params = torch.load(pretrained_model_file, map_location=device)

            model.load_state_dict(params["model"])

            if kwargs["resume"]:
                optimizer.load_state_dict(params["optimizer"])

                torch.cuda.set_rng_state_all([
                    state.cpu()
                    for state in params["torch_cuda_random_state_all"]
                ])
                torch.set_rng_state(params["torch_random_state"].cpu())
                np.random.set_state(params["np_random_state"])
                random.setstate(params["random_state"])

                global_steps = params["global_steps"]
                start_epoch = params["epoch"] + 1
                best_dev_fscore = params["fscore"]
        else:
            assert not os.path.isfile(
                pretrained_model_file
            ), "Please remove or move the pretrained model file to another place!"

        for epoch in trange(start_epoch, kwargs["num_epochs"], desc="Epoch"):
            model.train()

            train_loss = 0
            num_train_steps = 0

            for step, (indices, *_) in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                ids, attention_masks, tags, sections, trees, sentences = prepare_batch_input(
                    indices=indices,
                    features=train_features,
                    trees=train_parse,
                    sentences=train_sentences,
                    tag_encoder=tag_encoder,
                    device=device,
                )

                loss = model(
                    ids=ids,
                    attention_masks=attention_masks,
                    tags=tags,
                    sections=sections,
                    sentences=sentences,
                    gold_trees=trees,
                )

                if kwargs["gradient_accumulation_steps"] > 1:
                    loss /= kwargs["gradient_accumulation_steps"]

                if kwargs["fp16"]:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                train_loss += loss.item()

                num_train_steps += 1

                if (step + 1) % kwargs["gradient_accumulation_steps"] == 0:
                    optimizer.step()
                    optimizer.zero_grad()
                    global_steps += 1

            # Write logs
            neptune.send_metric("train_loss", epoch,
                                train_loss / num_train_steps)
            neptune.send_metric("global_steps", epoch, global_steps)

            tqdm.write(
                "Epoch: {:,} - Train loss: {:.4f} - Global steps: {:,}".format(
                    epoch, train_loss / num_train_steps, global_steps))

            # Evaluate
            eval_score = eval(
                model=model,
                eval_dataloader=dev_dataloader,
                eval_features=dev_features,
                eval_trees=dev_treebank,
                eval_sentences=dev_sentences,
                tag_encoder=tag_encoder,
                device=device,
            )

            neptune.send_metric("eval_precision", epoch,
                                eval_score.precision())
            neptune.send_metric("eval_recall", epoch, eval_score.recall())
            neptune.send_metric("eval_fscore", epoch, eval_score.fscore())

            tqdm.write("Epoch: {:,} - Evaluation score: {}".format(
                epoch, str(eval_score)))

            # Save best model
            if eval_score.fscore() > best_dev_fscore:
                best_dev_fscore = eval_score.fscore()

                tqdm.write("** Saving model...")

                os.makedirs(kwargs["output_dir"], exist_ok=True)

                torch.save(
                    {
                        "epoch":
                        epoch,
                        "global_steps":
                        global_steps,
                        "fscore":
                        best_dev_fscore,
                        "random_state":
                        random.getstate(),
                        "np_random_state":
                        np.random.get_state(),
                        "torch_random_state":
                        torch.get_rng_state(),
                        "torch_cuda_random_state_all":
                        torch.cuda.get_rng_state_all(),
                        "optimizer":
                        optimizer.state_dict(),
                        "model": (model.module if hasattr(model, "module") else
                                  model).state_dict(),
                    },
                    pretrained_model_file,
                )

            tqdm.write(
                "** Best evaluation fscore: {:.2f}".format(best_dev_fscore))
Пример #10
0
	param_optimizer = list(model.named_parameters())
	no_decay = ['bias', 'gamma', 'beta']
	optimizer_grouped_parameters = [
		{'params': [p for n, p in param_optimizer if n not in no_decay], 'weight_decay_rate': 0.01},
		{'params': [p for n, p in param_optimizer if n in no_decay], 'weight_decay_rate': 0.0}
		]

	num_train_steps = None
	if args.do_train:
		num_train_steps = int(len(data.train_data) / args.batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
	
	args.batch_size = int(args.batch_size / args.gradient_accumulation_steps) * n_gpu

	optimizer = BertAdam(optimizer_grouped_parameters,
						 lr=args.learning_rate,
						 warmup=args.warmup_proportion,
						 t_total=num_train_steps)

	## Using half precision for faster training
	if args.fp16:
		try:
			from apex import amp
		except ImportError:
			raise ImportError("Haven't install apex!!!")
		model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_level)
	
	# For distributed training
	if args.local_rank != -1:
		model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank)
	if n_gpu > 1:
		model = torch.nn.DataParallel(model)
Пример #11
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        help="The output directory where the model checkpoints will be written."
    )

    parser.add_argument("--train_file", default=None, type=str)
    parser.add_argument("--val_file", default=None, type=str)
    parser.add_argument("--test_file", default=None, type=str)
    parser.add_argument("--test_output", default=None, type=str)
    parser.add_argument("--label_vocab", default=None, type=str, required=True)
    parser.add_argument("--punc_set", default='PU', type=str)
    parser.add_argument("--has_confidence", action='store_true')
    parser.add_argument("--only_save_bert", action='store_true')

    parser.add_argument("--arc_space", default=512, type=int)
    parser.add_argument("--type_space", default=128, type=int)

    parser.add_argument("--log_file", default=None, type=str)

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict",
                        action='store_true',
                        help="Whether to run predict on the test set.")
    parser.add_argument("--do_greedy_predict",
                        action='store_true',
                        help="Whether to run predict on the test set.")
    parser.add_argument("--do_ensemble_predict",
                        action='store_true',
                        help="Whether to run predict on the test set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--test_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for test.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    if args.log_file is None:
        logging.basicConfig(
            format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
            datefmt='%m/%d/%Y %H:%M:%S',
            level=logging.INFO)
    else:
        logging.basicConfig(
            format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
            filename=args.log_file,
            filemode='w',
            datefmt='%m/%d/%Y %H:%M:%S',
            level=logging.INFO)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict and not args.do_greedy_predict and not args.do_ensemble_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        assert args.output_dir is not None

    if args.do_train and os.path.exists(args.output_dir) and os.listdir(
            args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if args.do_train and not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    label_vocab, label_vocab2idx = load_label_vocab(args.label_vocab)

    punc_set = set(
        args.punc_set.split(',')) if args.punc_set is not None else None

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        assert args.train_file is not None
        train_examples = read_conll_examples(
            args.train_file,
            is_training=True,
            has_confidence=args.has_confidence)

        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    if args.do_train or args.do_predict or args.do_greedy_predict:
        # load the pretrained model
        tokenizer = BertTokenizer.from_pretrained(
            args.bert_model, do_lower_case=args.do_lower_case)
        model = BertForDependencyParsing.from_pretrained(
            args.bert_model,
            cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE),
                                   'distributed_{}'.format(args.local_rank)),
            arc_space=args.arc_space,
            type_space=args.type_space,
            num_labels=len(label_vocab))

        if args.fp16:
            model.half()
        model.to(device)
        if args.local_rank != -1:
            try:
                from apex.parallel import DistributedDataParallel as DDP
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            model = DDP(model)
        elif n_gpu > 1:
            model = torch.nn.DataParallel(model)

        #
        parser = model.module if hasattr(model, 'module') else model
    elif args.do_ensemble_predict:
        bert_models = args.bert_model.split(',')
        assert len(bert_models) > 1
        tokenizer = BertTokenizer.from_pretrained(
            bert_models[0], do_lower_case=args.do_lower_case)
        models = []
        for bm in bert_models:
            model = BertForDependencyParsing.from_pretrained(
                bm,
                cache_dir=os.path.join(
                    str(PYTORCH_PRETRAINED_BERT_CACHE),
                    'distributed_{}'.format(args.local_rank)),
                arc_space=args.arc_space,
                type_space=args.type_space,
                num_labels=len(label_vocab))
            model.to(device)
            model.eval()
            models.append(model)
        parser = models[0].module if hasattr(models[0],
                                             'module') else models[0]

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        # !!! NOTE why?
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)
        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    # start training loop
    if args.do_train:
        global_step = 0
        train_features = convert_examples_to_features(
            train_examples,
            tokenizer,
            args.max_seq_length,
            label_vocab2idx,
            True,
            has_confidence=args.has_confidence)

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.float32)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_lengths = torch.tensor([f.seq_len for f in train_features],
                                   dtype=torch.long)
        all_heads = torch.tensor([f.heads for f in train_features],
                                 dtype=torch.long)
        all_labels = torch.tensor([f.labels for f in train_features],
                                  dtype=torch.long)

        if args.has_confidence:
            all_confidence = torch.tensor(
                [f.confidence for f in train_features], dtype=torch.float32)
            train_data = TensorDataset(all_input_ids, all_input_mask,
                                       all_segment_ids, all_lengths, all_heads,
                                       all_labels, all_confidence)
        else:
            train_data = TensorDataset(all_input_ids, all_input_mask,
                                       all_segment_ids, all_lengths, all_heads,
                                       all_labels)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)

        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        if args.do_eval:
            assert args.val_file is not None
            eval_examples = read_conll_examples(args.val_file,
                                                is_training=False,
                                                has_confidence=False)
            eval_features = convert_examples_to_features(eval_examples,
                                                         tokenizer,
                                                         args.max_seq_length,
                                                         label_vocab2idx,
                                                         False,
                                                         has_confidence=False)
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)

            all_example_ids = torch.tensor(
                [f.example_id for f in eval_features], dtype=torch.long)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.float32)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_lengths = torch.tensor([f.seq_len for f in eval_features],
                                       dtype=torch.long)
            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_lengths,
                                      all_example_ids)

            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.eval_batch_size)

        best_uas = 0
        best_las = 0
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            logger.info("Training epoch: {}".format(epoch))
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            model.train()
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                if args.has_confidence:
                    input_ids, input_mask, segment_ids, lengths, heads, label_ids, confidence = batch
                else:
                    confidence = None
                    input_ids, input_mask, segment_ids, lengths, heads, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, heads,
                             label_ids, confidence)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % 100 == 0:
                    logger.info("Training loss: {}, global step: {}".format(
                        tr_loss / nb_tr_steps, global_step))

            # we eval every epoch
            if args.do_eval and (args.local_rank == -1
                                 or torch.distributed.get_rank() == 0):
                logger.info("***** Running evaluation *****")

                model.eval()

                eval_predict_words, eval_predict_postags, eval_predict_heads, eval_predict_labels = [],[],[],[]

                for input_ids, input_mask, segment_ids, lengths, example_ids in tqdm(
                        eval_dataloader, desc="Evaluating"):
                    example_ids = example_ids.numpy()

                    batch_words = [
                        eval_features[eid].example.sentence
                        for eid in example_ids
                    ]
                    batch_postags = [
                        eval_features[eid].example.postags
                        for eid in example_ids
                    ]
                    batch_word_index = [
                        eval_features[eid].word_index for eid in example_ids
                    ]  # token -> word
                    batch_token_starts = [
                        eval_features[eid].token_starts for eid in example_ids
                    ]  # word -> token start
                    batch_heads = [
                        eval_features[eid].example.heads for eid in example_ids
                    ]

                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    heads = heads.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        # tmp_eval_loss = model(input_ids, segment_ids, input_mask, heads, label_ids)
                        energy = model(input_ids, segment_ids, input_mask)

                    heads_pred, labels_pred = parser.decode_MST(
                        energy.cpu().numpy(),
                        lengths.numpy(),
                        leading_symbolic=0,
                        labeled=True)

                    # we convert the subword dependency parsing to word dependency parsing just the word and token start map
                    pred_heads = []
                    pred_labels = []
                    for i in range(len(batch_word_index)):
                        word_index = batch_word_index[i]
                        token_starts = batch_token_starts[i]
                        hpd = []
                        lpd = []
                        for j in range(len(token_starts)):
                            if j == 0:  #[CLS]
                                continue
                            elif j == len(token_starts) - 1:  # [SEP]
                                continue
                            else:
                                hpd.append(
                                    word_index[heads_pred[i, token_starts[j]]])
                                lpd.append(
                                    label_vocab[labels_pred[i,
                                                            token_starts[j]]])
                        pred_heads.append(hpd)
                        pred_labels.append(lpd)

                    eval_predict_words += batch_words
                    eval_predict_postags += batch_postags
                    eval_predict_heads += pred_heads
                    eval_predict_labels += pred_labels

                eval_output_file = os.path.join(args.output_dir, 'eval.pred')

                write_conll_examples(eval_predict_words, eval_predict_postags,
                                     eval_predict_heads, eval_predict_labels,
                                     eval_output_file)

                eval_f = os.popen(
                    "python scripts/eval_nlpcc_dp.py " + args.val_file + " " +
                    eval_output_file, "r")
                result_text = eval_f.read().strip()
                logger.info("***** Eval results *****")
                logger.info(result_text)
                eval_f.close()
                eval_res = re.findall(
                    r'UAS = \d+/\d+ = ([\d\.]+), LAS = \d+/\d+ = ([\d\.]+)',
                    result_text)
                assert len(eval_res) > 0
                eval_res = eval_res[0]

                eval_uas = float(eval_res[0])
                eval_las = float(eval_res[1])

                # save model
                if best_las < eval_las or (eval_las == best_las
                                           and best_uas < eval_uas):
                    best_uas = eval_uas
                    best_las = eval_las

                    logger.info(
                        "new best uas  %.2f%% las %.2f%%, saving models.",
                        best_uas, best_las)

                    # Save a trained model, configuration and tokenizer
                    model_to_save = model.module if hasattr(
                        model,
                        'module') else model  # Only save the model it-self

                    # If we save using the predefined names, we can load using `from_pretrained`
                    output_model_file = os.path.join(args.output_dir,
                                                     WEIGHTS_NAME)
                    output_config_file = os.path.join(args.output_dir,
                                                      CONFIG_NAME)

                    model_dict = model_to_save.state_dict()
                    if args.only_save_bert:
                        model_dict = {
                            k: v
                            for k, v in model_dict.items() if 'bert.' in k
                        }

                    torch.save(model_dict, output_model_file)
                    model_to_save.config.to_json_file(output_config_file)
                    tokenizer.save_vocabulary(args.output_dir)

    # start predict
    if args.do_predict:
        model.eval()
        assert args.test_file is not None
        test_examples = read_conll_examples(args.test_file,
                                            is_training=False,
                                            has_confidence=False)
        test_features = convert_examples_to_features(test_examples,
                                                     tokenizer,
                                                     args.max_seq_length,
                                                     label_vocab2idx,
                                                     False,
                                                     has_confidence=False)
        logger.info("***** Running prediction *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.test_batch_size)
        all_example_ids = torch.tensor([f.example_id for f in test_features],
                                       dtype=torch.long)
        all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in test_features],
                                      dtype=torch.float32)
        all_segment_ids = torch.tensor([f.segment_ids for f in test_features],
                                       dtype=torch.long)
        all_lengths = torch.tensor([f.seq_len for f in test_features],
                                   dtype=torch.long)

        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_lengths,
                                  all_example_ids)

        # Run prediction for full data
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.test_batch_size)

        test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels = [],[],[],[]
        for batch_id, batch in enumerate(
                tqdm(test_dataloader, desc="Predicting")):
            input_ids, input_mask, segment_ids, lengths, example_ids = batch
            example_ids = example_ids.numpy()
            batch_words = [
                test_features[eid].example.sentence for eid in example_ids
            ]
            batch_postags = [
                test_features[eid].example.postags for eid in example_ids
            ]
            batch_word_index = [
                test_features[eid].word_index for eid in example_ids
            ]  # token -> word
            batch_token_starts = [
                test_features[eid].token_starts for eid in example_ids
            ]  # word -> token start

            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            lengths = lengths.numpy()

            with torch.no_grad():
                energy = model(input_ids, segment_ids, input_mask)

            heads_pred, labels_pred = parser.decode_MST(energy.cpu().numpy(),
                                                        lengths,
                                                        leading_symbolic=0,
                                                        labeled=True)

            pred_heads = []
            pred_labels = []
            for i in range(len(batch_word_index)):
                word_index = batch_word_index[i]
                token_starts = batch_token_starts[i]
                hpd = []
                lpd = []
                for j in range(len(token_starts)):
                    if j == 0:  #[CLS]
                        continue
                    elif j == len(token_starts) - 1:  # [SEP]
                        continue
                    else:
                        hpd.append(word_index[heads_pred[i, token_starts[j]]])
                        lpd.append(label_vocab[labels_pred[i,
                                                           token_starts[j]]])
                pred_heads.append(hpd)
                pred_labels.append(lpd)

            test_predict_words += batch_words
            test_predict_postags += batch_postags
            test_predict_heads += pred_heads
            test_predict_labels += pred_labels

        assert args.test_output is not None
        write_conll_examples(test_predict_words, test_predict_postags,
                             test_predict_heads, test_predict_labels,
                             args.test_output)

    if args.do_greedy_predict:
        model.eval()
        assert args.test_file is not None
        test_examples = read_conll_examples(args.test_file,
                                            is_training=False,
                                            has_confidence=False)
        test_features = convert_examples_to_features(test_examples,
                                                     tokenizer,
                                                     args.max_seq_length,
                                                     label_vocab2idx,
                                                     False,
                                                     has_confidence=False)
        logger.info("***** Running prediction *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.test_batch_size)
        all_example_ids = torch.tensor([f.example_id for f in test_features],
                                       dtype=torch.long)
        all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in test_features],
                                      dtype=torch.float32)
        all_segment_ids = torch.tensor([f.segment_ids for f in test_features],
                                       dtype=torch.long)
        all_lengths = torch.tensor([f.seq_len for f in test_features],
                                   dtype=torch.long)

        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_lengths,
                                  all_example_ids)

        # Run prediction for full data
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.test_batch_size)

        test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels = [],[],[],[]
        for batch_id, batch in enumerate(
                tqdm(test_dataloader, desc="Predicting")):
            input_ids, input_mask, segment_ids, lengths, example_ids = batch
            example_ids = example_ids.numpy()
            batch_words = [
                test_features[eid].example.sentence for eid in example_ids
            ]
            batch_postags = [
                test_features[eid].example.postags for eid in example_ids
            ]
            batch_word_index = [
                test_features[eid].word_index for eid in example_ids
            ]  # token -> word
            batch_token_starts = [
                test_features[eid].token_starts for eid in example_ids
            ]  # word -> token start

            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            lengths = lengths.numpy()

            with torch.no_grad():
                heads_pred, labels_pred = model(input_ids,
                                                segment_ids,
                                                input_mask,
                                                greedy_inference=True)

            pred_heads = []
            pred_labels = []
            for i in range(len(batch_word_index)):
                word_index = batch_word_index[i]
                token_starts = batch_token_starts[i]
                hpd = []
                lpd = []
                for j in range(len(token_starts)):
                    if j == 0:  #[CLS]
                        continue
                    elif j == len(token_starts) - 1:  # [SEP]
                        continue
                    else:
                        hpd.append(word_index[heads_pred[i, token_starts[j]]])
                        lpd.append(label_vocab[labels_pred[i,
                                                           token_starts[j]]])
                pred_heads.append(hpd)
                pred_labels.append(lpd)

            test_predict_words += batch_words
            test_predict_postags += batch_postags
            test_predict_heads += pred_heads
            test_predict_labels += pred_labels

        assert args.test_output is not None
        write_conll_examples(test_predict_words, test_predict_postags,
                             test_predict_heads, test_predict_labels,
                             args.test_output)

    if args.do_ensemble_predict:
        assert args.test_file is not None
        test_examples = read_conll_examples(args.test_file,
                                            is_training=False,
                                            has_confidence=False)
        test_features = convert_examples_to_features(test_examples,
                                                     tokenizer,
                                                     args.max_seq_length,
                                                     label_vocab2idx,
                                                     False,
                                                     has_confidence=False)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.test_batch_size)
        all_example_ids = torch.tensor([f.example_id for f in test_features],
                                       dtype=torch.long)
        all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in test_features],
                                      dtype=torch.float32)
        all_segment_ids = torch.tensor([f.segment_ids for f in test_features],
                                       dtype=torch.long)
        all_lengths = torch.tensor([f.seq_len for f in test_features],
                                   dtype=torch.long)

        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_lengths,
                                  all_example_ids)

        # Run prediction for full data
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.test_batch_size)

        test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels = [],[],[],[]
        for batch_id, batch in enumerate(
                tqdm(test_dataloader, desc="Predicting")):
            input_ids, input_mask, segment_ids, lengths, example_ids = batch
            example_ids = example_ids.numpy()
            batch_words = [
                test_features[eid].example.sentence for eid in example_ids
            ]
            batch_postags = [
                test_features[eid].example.postags for eid in example_ids
            ]
            batch_word_index = [
                test_features[eid].word_index for eid in example_ids
            ]  # token -> word
            batch_token_starts = [
                test_features[eid].token_starts for eid in example_ids
            ]  # word -> token start

            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            lengths = lengths.numpy()

            with torch.no_grad():
                energy_sum = None
                for model in models:
                    energy = model(input_ids, segment_ids, input_mask)
                    if energy_sum is None:
                        energy_sum = energy
                    else:
                        energy_sum = energy_sum + energy

                energy_sum = energy_sum / len(models)

            heads_pred, labels_pred = parser.decode_MST(
                energy_sum.cpu().numpy(),
                lengths,
                leading_symbolic=0,
                labeled=True)

            pred_heads = []
            pred_labels = []
            for i in range(len(batch_word_index)):
                word_index = batch_word_index[i]
                token_starts = batch_token_starts[i]
                hpd = []
                lpd = []
                for j in range(len(token_starts)):
                    if j == 0:  #[CLS]
                        continue
                    elif j == len(token_starts) - 1:  # [SEP]
                        continue
                    else:
                        hpd.append(word_index[heads_pred[i, token_starts[j]]])
                        lpd.append(label_vocab[labels_pred[i,
                                                           token_starts[j]]])
                pred_heads.append(hpd)
                pred_labels.append(lpd)

            test_predict_words += batch_words
            test_predict_postags += batch_postags
            test_predict_heads += pred_heads
            test_predict_labels += pred_labels

        assert args.test_output is not None
        write_conll_examples(test_predict_words, test_predict_postags,
                             test_predict_heads, test_predict_labels,
                             args.test_output)
Пример #12
0
def create_optimizer(model,
                     args,
                     num_train_steps=None,
                     init_spec=None,
                     no_decay=['bias', 'LayerNorm.weight']):
    # Prepare optimizer
    if args.fp16:
        dcnt = torch.cuda.device_count()
        if args.no_even_grad:
            param_optimizer = [(n, param.detach().clone().type(torch.cuda.FloatTensor).\
            requires_grad_()) for i,(n,param) in enumerate(model.named_parameters())]
        else:
            total_size = sum(np.prod(p.size()) for p in model.parameters())
            quota = {i: 0 for i in range(dcnt)}
            quota[0] = total_size // (dcnt * 2)
            param_optimizer = []
            for i, (n, param) in enumerate(model.named_parameters()):
                ps = np.prod(param.size())
                index = list(sorted(quota.items(), key=lambda x: x[1]))[0][0]
                quota[index] += ps
                cp = param.clone().type(torch.cuda.FloatTensor).detach().to(
                    'cuda:{}'.format(index)).requires_grad_()
                param_optimizer += [(n, cp)]
    elif args.optimize_on_cpu:
        param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
                  for n, param in model.named_parameters()]
    else:
        param_optimizer = [(n, p) for n, p in model.named_parameters()]
    group0 = dict(params=[], weight_decay_rate=args.weight_decay, names=[])
    group1 = dict(params=[], weight_decay_rate=0.00, names=[])
    for (n, p) in param_optimizer:
        if not any(nd in n for nd in no_decay):
            group0['params'].append(p)
            group0['names'].append(n)
        else:
            group1['params'].append(p)
            group1['names'].append(n)

    optimizer_grouped_parameters = [group0, group1]
    t_total = num_train_steps
    optimizer = None

    if t_total:
        if args.local_rank != -1:
            t_total = t_total // torch.distributed.get_world_size()
        optimizer = BertAdam(
            optimizer_grouped_parameters,
            lr=args.learning_rate,
            b1=args.adam_beta1,
            b2=args.adam_beta2,
            v1=args.qhadam_v1,
            v2=args.qhadam_v2,
            lr_ends=args.lr_schedule_ends,
            e=args.epsilon,
            warmup=args.warmup_proportion if args.warmup_proportion < 1 else
            args.warmup_proportion / t_total,
            t_total=t_total,
            schedule=args.lr_schedule,
            max_grad_norm=args.max_grad_norm,
            global_grad_norm=args.global_grad_norm,
            init_spec=init_spec,
            weight_decay_rate=args.weight_decay)
    return optimizer, param_optimizer, t_total
Пример #13
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--device",
                        default=None,
                        type=str,
                        required=True,
                        help="The GPU device you will run on.")
    parser.add_argument(
        "--features_file",
        default=None,
        type=str,
        required=True,
        help=
        "The train features file. Should contain the .csv files (after tokenized) for the task."
        "Format: example_id,input_ids,input_mask,segment_ids,label\n")
    parser.add_argument(
        "--teacher_model",
        default=None,
        type=str,
        help=
        "The teacher model dir. Should contain the config/vocab/checkpoint file."
    )
    parser.add_argument(
        "--general_student_model",
        default=None,
        type=str,
        required=True,
        help="The student model (after general distillation) dir. "
        "Should contain the config/vocab/checkpoint file.")
    parser.add_argument(
        "--output_student_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory for the task-specific distilled student models.")
    parser.add_argument("--cache_file_dir",
                        default='./cache',
                        type=str,
                        required=True,
                        help="The directory where cache the features.")
    parser.add_argument(
        "--distill_model",
        default='simplified',
        type=str,
        help="The distill model type, choose in 'standard' and 'simplified'.")
    parser.add_argument(
        "--max_seq_length",
        default=256,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization."
    )
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=64,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--weight_decay',
                        '--wd',
                        default=1e-2,
                        type=float,
                        metavar='W',
                        help='weight decay')
    parser.add_argument("--num_train_epochs",
                        default=2,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--alpha",
        default=0.5,
        type=float,
        help="The weight of soft loss in standard kd method."
        "Only use when '--distill_model' is set as 'standard'.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="Random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--train_loss_step',
        type=int,
        default=1000,
        help="How many train step to record a training loss.  ")
    parser.add_argument('--save_model_step',
                        type=int,
                        default=3000,
                        help="How many train step to save a student model.")
    parser.add_argument('--temperature',
                        type=float,
                        default=1.,
                        help="The temperature in soft loss.")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit."
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")

    args = parser.parse_args()
    logger.info('The args: {}'.format(args))

    # Prepare device
    os.environ["CUDA_VISIBLE_DEVICES"] = args.device
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {} n_gpu: {}".format(device, n_gpu))

    # Prepare seed
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    # Prepare task settings
    if os.path.exists(args.output_student_dir) and os.listdir(
            args.output_student_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_student_dir))
    if not os.path.exists(args.output_student_dir):
        os.makedirs(args.output_student_dir)
    if not os.path.exists(args.cache_file_dir):
        os.makedirs(args.cache_file_dir)

    # For save vocab file for all output models.
    tokenizer = BertTokenizer.from_pretrained(args.general_student_model,
                                              do_lower_case=args.do_lower_case)

    # Model
    teacher_model = TinyBertForSequenceClassification.from_pretrained(
        args.teacher_model, num_labels=2)
    if args.fp16:
        teacher_model.half()
    teacher_model.to(device)

    student_model = TinyBertForSequenceClassification.from_pretrained(
        args.general_student_model, num_labels=2)
    student_model.to(device)

    # Train Config
    num_examples, train_dataloader = distill_dataloader(
        args, RandomSampler, batch_size=args.train_batch_size)

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    num_train_optimization_steps = int(
        num_examples / args.train_batch_size /
        args.gradient_accumulation_steps) * args.num_train_epochs

    logger.info("***** Running Distilling *****")
    logger.info("  Num examples = %d", num_examples)
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)

    # Prepare optimizer
    param_optimizer = list(student_model.named_parameters())
    size = 0
    for n, p in student_model.named_parameters():
        logger.info('n: {}'.format(n))
        size += p.nelement()

    logger.info('Total parameters of student_model: {}'.format(size))
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    schedule = 'warmup_linear'
    optimizer = BertAdam(optimizer_grouped_parameters,
                         schedule=schedule,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=num_train_optimization_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        student_model, optimizer = amp.initialize(
            student_model, optimizer, opt_level=args.fp16_opt_level)
        logger.info('FP16 is activated, use amp')
    else:
        logger.info('FP16 is not activated, only use BertAdam')

    if n_gpu > 1:
        student_model = torch.nn.DataParallel(student_model)
        teacher_model = torch.nn.DataParallel(teacher_model)

    # Prepare loss functions
    loss_mse = MSELoss()

    def soft_cross_entropy(predicts, targets):
        student_likelihood = torch.nn.functional.log_softmax(predicts, dim=-1)
        targets_prob = torch.nn.functional.softmax(targets, dim=-1)
        return (-targets_prob * student_likelihood).mean()

    # Train
    global_step = 0
    output_loss_file = os.path.join(args.output_student_dir, "train_loss.txt")
    tr_loss = 0.
    tr_att_loss = 0.
    tr_rep_loss = 0.
    tr_cls_loss = 0.

    for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
        student_model.train()

        for step, batch in enumerate(
                tqdm(train_dataloader, desc="Iteration", ascii=True)):
            batch = tuple(t.to(device) for t in batch)

            input_ids, input_mask, segment_ids, label_ids = batch
            if input_ids.size()[0] != args.train_batch_size:
                continue

            student_logits, student_atts, student_reps = student_model(
                input_ids, segment_ids, input_mask, is_student=True)
            with torch.no_grad():
                teacher_logits, teacher_atts, teacher_reps = teacher_model(
                    input_ids, segment_ids, input_mask)

            soft_loss = soft_cross_entropy(student_logits / args.temperature,
                                           teacher_logits / args.temperature)
            hard_loss = torch.nn.functional.cross_entropy(student_logits,
                                                          label_ids,
                                                          reduction='mean')

            if args.distill_model == 'standard':
                cls_loss = args.alpha * soft_loss + (1 -
                                                     args.alpha) * hard_loss
                tr_cls_loss += cls_loss.item()
                loss = cls_loss
            elif args.distill_model == 'simplified':
                teacher_layer_num = len(teacher_atts)
                student_layer_num = len(student_atts)
                assert teacher_layer_num % student_layer_num == 0
                layers_per_block = int(teacher_layer_num / student_layer_num)
                new_teacher_atts = [
                    teacher_atts[i * layers_per_block + layers_per_block - 1]
                    for i in range(student_layer_num)
                ]
                att_loss = 0.
                rep_loss = 0.
                # attention loss
                for student_att, teacher_att in zip(student_atts,
                                                    new_teacher_atts):
                    student_att = torch.where(
                        student_att <= -1e2,
                        torch.zeros_like(student_att).to(device), student_att)
                    teacher_att = torch.where(
                        teacher_att <= -1e2,
                        torch.zeros_like(teacher_att).to(device), teacher_att)
                    tmp_loss = loss_mse(student_att, teacher_att)
                    att_loss += tmp_loss

                # hidden states loss
                new_teacher_reps = [
                    teacher_reps[i * layers_per_block]
                    for i in range(student_layer_num + 1)
                ]
                new_student_reps = student_reps
                for student_rep, teacher_rep in zip(new_student_reps,
                                                    new_teacher_reps):
                    tmp_loss = loss_mse(student_rep, teacher_rep)
                    rep_loss += tmp_loss

                tr_att_loss += att_loss.item()
                tr_rep_loss += rep_loss.item()

                # classification loss
                cls_loss = soft_loss + hard_loss
                tr_cls_loss += cls_loss.item()

                # total loss
                loss = rep_loss + att_loss + cls_loss
            else:
                raise NotImplementedError

            if n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu.
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()

            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                optimizer.zero_grad()
                global_step += 1

            if global_step % args.train_loss_step == 0:
                loss = tr_loss / args.train_loss_step
                cls_loss = tr_cls_loss / args.train_loss_step
                att_loss = tr_att_loss / args.train_loss_step
                rep_loss = tr_rep_loss / args.train_loss_step

                loss_dict = {}
                loss_dict['global_step'] = global_step
                loss_dict['cls_loss'] = cls_loss
                loss_dict['att_loss'] = att_loss
                loss_dict['rep_loss'] = rep_loss
                loss_dict['loss'] = loss

                write_loss_to_file(loss_dict, output_loss_file)

                tr_loss = 0.
                tr_att_loss = 0.
                tr_rep_loss = 0.
                tr_cls_loss = 0.

            if global_step % args.save_model_step == 0:
                logger.info("***** Save model *****")

                model_to_save = student_model.module if hasattr(
                    student_model, 'module') else student_model
                model_name = WEIGHTS_NAME
                checkpoint_name = 'checkpoint-' + str(global_step)
                output_model_dir = os.path.join(args.output_dir,
                                                checkpoint_name)
                if not os.path.exists(output_model_dir):
                    os.makedirs(output_model_dir)
                output_model_file = os.path.join(output_model_dir, model_name)
                output_config_file = os.path.join(output_model_dir,
                                                  CONFIG_NAME)

                torch.save(model_to_save.state_dict(), output_model_file)
                model_to_save.config.to_json_file(output_config_file)
                tokenizer.save_vocabulary(output_model_dir)

    if os.path.exists(args.cache_file_dir):
        import shutil
        shutil.rmtree(args.cache_file_dir)