def basic_loss(self, y_true, y_pred, go_backwards=False): """y_true需要是整数形式(非one hot) """ # 导出mask并转换数据类型 mask = K.all(K.greater(y_pred, -1e6), axis=2) mask = K.cast(mask, K.floatx()) # y_true需要重新明确一下shape和dtype y_true = K.reshape(y_true, K.shape(y_pred)[:-1]) y_true = K.cast(y_true, 'int32') # 反转相关 if self.hidden_dim is None: if go_backwards: # 是否反转序列 y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask) trans = K.transpose(self.trans) else: trans = self.trans histoty = K.gather(trans, y_true) else: if go_backwards: # 是否反转序列 y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask) r_trans, l_trans = self.l_trans, self.r_trans else: l_trans, r_trans = self.l_trans, self.r_trans histoty = K.gather(l_trans, y_true) histoty = tf.einsum('bnd,kd->bnk', histoty, r_trans) # 计算loss histoty = K.concatenate([y_pred[:, :1], histoty[:, :-1]], 1) y_pred = (y_pred + histoty) / 2 loss = K.sparse_categorical_crossentropy(y_true, y_pred, from_logits=True) return K.sum(loss * mask) / K.sum(mask)
def _resource_apply(self, grad, var, indices=None): # 准备变量 var_dtype = var.dtype.base_dtype lr_t = self._decayed_lr(var_dtype) m = self.get_slot(var, 'm') v = self.get_slot(var, 'v') beta_1_t = self._get_hyper('beta_1', var_dtype) beta_2_t = self._get_hyper('beta_2', var_dtype) epsilon_t = K.cast(self.epsilon, var_dtype) local_step = K.cast(self.iterations + 1, var_dtype) beta_1_t_power = K.pow(beta_1_t, local_step) beta_2_t_power = K.pow(beta_2_t, local_step) # 更新公式 if indices is None: m_t = K.update(m, beta_1_t * m + (1 - beta_1_t) * grad) v_t = K.update(v, beta_2_t * v + (1 - beta_2_t) * grad**2) else: mv_ops = [K.update(m, beta_1_t * m), K.update(v, beta_2_t * v)] with tf.control_dependencies(mv_ops): m_t = self._resource_scatter_add(m, indices, (1 - beta_1_t) * grad) v_t = self._resource_scatter_add(v, indices, (1 - beta_2_t) * grad**2) # 返回算子 with tf.control_dependencies([m_t, v_t]): if self.bias_correction: m_t = m_t / (1.0 - beta_1_t_power) v_t = v_t / (1.0 - beta_2_t_power) var_t = var - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) return K.update(var, var_t)
def compute_position_ids(self, inputs): """T5的相对位置分桶(直接翻译自官方T5源码) """ q, v = inputs # 计算位置差 q_idxs = K.arange(0, K.shape(q)[1], dtype='int32') q_idxs = K.expand_dims(q_idxs, 1) v_idxs = K.arange(0, K.shape(v)[1], dtype='int32') v_idxs = K.expand_dims(v_idxs, 0) pos_ids = v_idxs - q_idxs # 后处理操作 num_buckets, max_distance = self.input_dim, self.max_distance ret = 0 n = -pos_ids if self.bidirectional: num_buckets //= 2 ret += K.cast(K.less(n, 0), 'int32') * num_buckets n = K.abs(n) else: n = K.maximum(n, 0) # now n is in the range [0, inf) max_exact = num_buckets // 2 is_small = K.less(n, max_exact) val_if_large = max_exact + K.cast( K.log(K.cast(n, K.floatx()) / max_exact) / np.log(max_distance / max_exact) * (num_buckets - max_exact), 'int32', ) val_if_large = K.minimum(val_if_large, num_buckets - 1) ret += K.switch(is_small, n, val_if_large) return ret
def basic_accuracy(self, y_true, y_pred, go_backwards=False): """训练过程中显示逐帧准确率的函数,排除了mask的影响 此处y_true需要是整数形式(非one hot) """ # 导出mask并转换数据类型 mask = K.all(K.greater(y_pred, -1e6), axis=2) mask = K.cast(mask, K.floatx()) # y_true需要重新明确一下shape和dtype y_true = K.reshape(y_true, K.shape(y_pred)[:-1]) y_true = K.cast(y_true, 'int32') # 反转相关 if self.hidden_dim is None: if go_backwards: # 是否反转序列 y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask) trans = K.transpose(self.trans) else: trans = self.trans histoty = K.gather(trans, y_true) else: if go_backwards: # 是否反转序列 y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask) r_trans, l_trans = self.l_trans, self.r_trans else: l_trans, r_trans = self.l_trans, self.r_trans histoty = K.gather(l_trans, y_true) histoty = tf.einsum('bnd,kd->bnk', histoty, r_trans) # 计算逐标签accuracy histoty = K.concatenate([y_pred[:, :1], histoty[:, :-1]], 1) y_pred = (y_pred + histoty) / 2 y_pred = K.cast(K.argmax(y_pred, 2), 'int32') isequal = K.cast(K.equal(y_true, y_pred), K.floatx()) return K.sum(isequal * mask) / K.sum(mask)
def call(self, inputs, mask=None, a_mask=None, p_bias=None): """实现多头注意力 q_mask: 对输入的query序列的mask。 主要是将输出结果的padding部分置0。 v_mask: 对输入的value序列的mask。 主要是防止attention读取到padding信息。 a_mask: 对attention矩阵的mask。 不同的attention mask对应不同的应用。 p_bias: 在attention里的位置偏置。 一般用来指定相对位置编码的种类。 """ q, k, v = inputs[:3] q_mask, v_mask, n = None, None, 3 if mask is not None: if mask[0] is not None: q_mask = K.cast(mask[0], K.floatx()) if mask[2] is not None: v_mask = K.cast(mask[2], K.floatx()) if a_mask: a_mask = inputs[n] n += 1 # 线性变换 qw = self.q_dense(q) kw = self.k_dense(k) vw = self.v_dense(v) # 形状变换 qw = K.reshape(qw, (-1, K.shape(q)[1], self.heads, self.key_size)) kw = K.reshape(kw, (-1, K.shape(k)[1], self.heads, self.key_size)) vw = K.reshape(vw, (-1, K.shape(v)[1], self.heads, self.head_size)) # Attention a = tf.einsum('bjhd,bkhd->bhjk', qw, kw) # 处理位置编码 if p_bias == 'typical_relative': pos_embeddings = inputs[n] a = a + tf.einsum('bjhd,jkd->bhjk', qw, pos_embeddings) elif p_bias == 't5_relative': pos_embeddings = K.permute_dimensions(inputs[n], (2, 0, 1)) a = a + K.expand_dims(pos_embeddings, 0) # Attention(续) if self.attention_scale: a = a / self.key_size**0.5 a = sequence_masking(a, v_mask, 1, -1) if a_mask is not None: a = a - (1 - a_mask) * 1e12 a = K.softmax(a) # 完成输出 o = tf.einsum('bhjk,bkhd->bjhd', a, vw) if p_bias == 'typical_relative': o = o + tf.einsum('bhjk,jkd->bjhd', a, pos_embeddings) o = K.reshape(o, (-1, K.shape(o)[1], self.out_dim)) o = self.o_dense(o) # 返回结果 o = sequence_masking(o, q_mask, 0) return o
def sparse_accuracy(self, y_true, y_pred): """训练过程中显示逐帧准确率的函数,排除了mask的影响 此处y_true需要是整数形式(非one hot) """ # 导出mask并转换数据类型 mask = K.all(K.greater(y_pred, -1e6), axis=2) mask = K.cast(mask, K.floatx()) # y_true需要重新明确一下shape和dtype y_true = K.reshape(y_true, K.shape(y_pred)[:-1]) y_true = K.cast(y_true, 'int32') # 逐标签取最大来粗略评测训练效果 y_pred = K.cast(K.argmax(y_pred, 2), 'int32') isequal = K.cast(K.equal(y_true, y_pred), K.floatx()) return K.sum(isequal * mask) / K.sum(mask)
def get_updates(self, loss, params): # 更新判据 cond = K.equal(self.iterations % self.grad_accum_steps, 0) cond = K.cast(cond, K.floatx()) # 获取梯度 grads = self.get_gradients(loss, params) self.accum_grads = [ K.zeros(K.int_shape(p), dtype=K.dtype(p), name='accum_grad_%s' % i) for i, p in enumerate(params) ] old_update = K.update def new_update(x, new_x): new_x = cond * new_x + (1 - cond) * x return old_update(x, new_x) K.update = new_update updates = super(NewOptimizer, self).get_updates(loss, params) K.update = old_update # 累积梯度 with tf.control_dependencies(updates): accum_updates = [ K.update(ag, g + (1 - cond) * ag) for g, ag in zip(grads, self.accum_grads) ] return accum_updates
def sparse_loss(self, y_true, y_pred): """y_true需要是整数形式(非one hot) """ # y_true需要重新明确一下shape和dtype y_true = K.reshape(y_true, K.shape(y_pred)[:-1]) y_true = K.cast(y_true, 'int32') # 转为one hot y_true = K.one_hot(y_true, K.shape(self.trans)[0]) return self.dense_loss(y_true, y_pred)
def compile(self): # 交叉熵作为loss,并mask掉输入部分的预测 y_true = self.model.input[0][:, 1:] # 目标tokens y_mask = self.model.input[1][:, 1:] # 目标mask y_mask = K.cast(y_mask, K.floatx()) # 转为浮点型 y_pred = self.model.output[:, :-1] # 预测tokens,预测与目标错开一位 cross_entropy = K.sparse_categorical_crossentropy(y_true, y_pred) cross_entropy = K.sum(cross_entropy * y_mask) / K.sum(y_mask) self.model.add_loss(cross_entropy) opt = extend_with_gradient_accumulation(Adam)(learning_rate=0.000015, grad_accum_steps=2) self.model.compile(optimizer=opt)
def new_update(x, new_x): if x is var and self._do_lazy_optimization(x): if indices is None: r = K.any(K.not_equal(grad, 0.0), axis=-1, keepdims=True) new_x = x + (new_x - x) * K.cast(r, K.floatx()) return old_update(x, new_x) else: return self._resource_scatter_add( x, indices, K.gather(new_x - x, indices)) return old_update(x, new_x)
def learning_rate(self): if self._learning_rate is None: iterations = K.cast(self.iterations + 1, K.floatx()) learning_rate = K.minimum(1.0 / K.sqrt(iterations), 0.01) if self.multiply_by_parameter_scale: return learning_rate else: return learning_rate * 0.05 else: if not hasattr(self, '__learning_rate'): with K.name_scope(self.__class__.__name__): self.__learning_rate = K.variable(self._learning_rate, name='learning_rate') return self.__learning_rate
def dense_loss(self, y_true, y_pred): """y_true需要是one hot形式 """ # 导出mask并转换数据类型 mask = K.all(K.greater(y_pred, -1e6), axis=2, keepdims=True) mask = K.cast(mask, K.floatx()) # 计算目标分数 y_true, y_pred = y_true * mask, y_pred * mask target_score = self.target_score(y_true, y_pred) # 递归计算log Z init_states = [y_pred[:, 0]] y_pred = K.concatenate([y_pred, mask], axis=2) input_length = K.int_shape(y_pred[:, 1:])[1] log_norm, _, _ = K.rnn(self.log_norm_step, y_pred[:, 1:], init_states, input_length=input_length) # 最后一步的log Z向量 log_norm = tf.reduce_logsumexp(log_norm, 1) # logsumexp得标量 # 计算损失 -log p return log_norm - target_score
def call(self, inputs): """如果custom_position_ids,那么第二个输入为自定义的位置id """ if self.custom_position_ids: inputs, position_ids = inputs if K.dtype(position_ids) != 'int32': position_ids = K.cast(position_ids, 'int32') pos_embeddings = K.gather(self.embeddings, position_ids) else: input_shape = K.shape(inputs) batch_size, seq_len = input_shape[0], input_shape[1] pos_embeddings = self.embeddings[:seq_len] pos_embeddings = K.expand_dims(pos_embeddings, 0) if self.merge_mode != 'add': pos_embeddings = K.tile(pos_embeddings, [batch_size, 1, 1]) if self.merge_mode == 'add': return inputs + pos_embeddings else: return K.concatenate([inputs, pos_embeddings])
def _decayed_lr(self, var_dtype): lr_multiplier = piecewise_linear(self.iterations, self.lr_schedule) lr_t = super(NewOptimizer, self)._decayed_lr(var_dtype) return lr_t * K.cast(lr_multiplier, var_dtype)
def reverse_sequence(self, inputs, mask=None): if mask is None: return [x[:, ::-1] for x in inputs] else: length = K.cast(K.sum(mask, 1), 'int32') return [tf.reverse_sequence(x, length, seq_axis=1) for x in inputs]
def call(self, inputs, mask=None): if mask is not None: mask = K.cast(mask, K.floatx()) return sequence_masking(inputs, mask, 1, 1)
def new_update(x, new_x): if is_one_of(x, params) and self._do_lazy_optimization(x): g = self.grads[x] r = K.any(K.not_equal(g, 0.0), axis=-1, keepdims=True) new_x = x + (new_x - x) * K.cast(r, K.floatx()) return old_update(x, new_x)
def beta2(self): if self._beta2 is None: iterations = K.cast(self.iterations + 1, K.floatx()) return 1.0 - K.pow(iterations, -0.8) else: return self._beta2