Пример #1
0
    def test_approx_real_surface(self):
        # Test approximation of real surface grid using a random subset
        #  hard test of regularization.
        logging.basicConfig(level=logging.DEBUG)

        xy_mat = np.array([[1.0, 0.0, 0],
                           [0.0, 1.0, 0]])  # rotate left pi/4 and blow up 1.44
        #z_mat = np.array( [1.0, 0] )
        xyz_func = eval_func_on_grid(function_sin_cos, xy_mat[:2, :2],
                                     xy_mat[:, 2])

        print("Compare: Func - Randomized.approx")
        points = bs.make_function_grid(function_sin_cos, 50, 50)
        points = points.reshape((-1, 3))
        n_sample_points = 400  # this is near the limit number of points to keep desired precision
        random_subset = np.random.randint(0, len(points), n_sample_points)
        points_random = points[random_subset, :]

        approx = bs_approx.SurfaceApprox(points_random)
        approx.set_quad(None)  # set unit square
        surface = approx.compute_approximation()
        xyz_grid = eval_z_surface_on_grid(surface, xy_mat[:2, :2], xy_mat[:,
                                                                          2])
        print("Approx error: ", approx.error)
        grid_cmp(xyz_func, xyz_grid, 0.02)
Пример #2
0
    def surf_app(self):

        fc = np.zeros([self.x_n_samples * self.y_n_samples, 3])
        for i in range(self.x_n_samples):
            for j in range(self.y_n_samples):
                fc[i + j * self.y_n_samples, 0:2] = [i / self.x_n_samples * self.x_length, j / self.y_n_samples * self.y_length]
                fc[i + j * self.y_n_samples, 2] = self.surfzf(fc[i + j * self.y_n_samples, 0:2])

        approx = bsa.SurfaceApprox(fc)
        surfz = approx.compute_adaptive_approximation(nuv=np.array([self.x_n_control_points, self.y_n_control_points]))
        err = approx.error
        surfzf = surfz.make_full_surface()
        return err, surfzf
Пример #3
0
    def test_approx_func(self):
        logging.basicConfig(level=logging.DEBUG)

        xy_mat = np.array([[1.0, -1.0, 10],
                           [1.0, 1.0,
                            20]])  # rotate left pi/4 and blow up 1.44
        z_mat = np.array([2.0, -10])

        # print("Compare: Func - GridSurface.transform")
        # points = bs.make_function_grid(function_sin_cos, 200, 200)
        # gs = bs.GridSurface(points.reshape(-1, 3))
        # gs.transform(xy_mat, z_mat)
        # xyz_grid = eval_z_surface_on_grid(gs, xy_mat[:2,:2], xy_mat[:, 2])
        # grid_cmp(xyz_func, xyz_grid, 0.02)
        #
        # print("Compare: Func - GridSurface.transform.z_surf")
        # xyz_grid = eval_z_surface_on_grid(gs.z_surface, xy_mat[:2, :2], xy_mat[:, 2])
        # xyz_grid[:,:,2] *= z_mat[0]
        # xyz_grid[:, :, 2] += z_mat[1]
        # grid_cmp(xyz_func, xyz_grid, 0.02)

        print("\nCompare: Func - GridSurface.approx")
        points = bs.make_function_grid(function_sin_cos, 50, 50)
        gs = bs.GridSurface(points.reshape(-1, 3))
        xy_center = gs.center()[0:2]
        z_center = gs.center()[2]
        gs.transform(xy_mat, z_mat)
        approx = bs_approx.SurfaceApprox.approx_from_grid_surface(gs)
        surface = approx.compute_approximation()

        xy_shift = xy_mat[:, 2] - np.dot(xy_mat[:2, :2], xy_center) + xy_center
        xyz_grid = eval_z_surface_on_grid(surface, xy_mat[:2, :2], xy_shift)

        xyz_func = eval_func_on_grid(function_sin_cos, xy_mat[:2, :2],
                                     xy_mat[:, 2])
        xyz_func[:, :, 2] -= z_center
        xyz_func[:, :, 2] *= z_mat[0]
        xyz_func[:, :, 2] += z_mat[1] + z_center
        print("Approx error: ", approx.error)
        grid_cmp(xyz_func, xyz_grid, 0.02)

        print("\nCompare: Func - points.approx")
        np.random.seed(seed=123)
        uv = np.random.rand(1000, 2)
        xy = xy_mat[:2, :2].dot(uv.T).T + xy_mat[:, 2]
        z = np.array([function_sin_cos([u, v]) for u, v in uv])
        xyz = np.concatenate((xy, z[:, None]), axis=1)
        approx = bs_approx.SurfaceApprox(xyz)
        quad = approx.compute_default_quad()

        nuv = approx.nuv
        ref_quad = np.array([[-1, 1], [0, 0], [1, 1], [0, 2]])
        ref_quad += np.array([10, 20])
        assert np.allclose(ref_quad, quad, atol=1e-2)

        nuv = approx.compute_default_nuv()
        assert np.allclose(np.array([8, 8]), nuv)

        surface = approx.compute_approximation()
        z_center = surface.center()[2]
        surface.transform(xy_mat=None, z_mat=z_mat)
        nu, nv = 50, 50
        uv_probe = gen_uv_grid(nu, nv)
        uv_probe = (0.9 * uv_probe + 0.05)
        xy_probe = xy_mat[:2, :2].dot(uv_probe.T).T + xy_mat[:, 2]
        z_func = np.array([function_sin_cos([u, v]) for u, v in uv_probe])
        z_func -= z_center
        z_func *= z_mat[0]
        z_func += z_mat[1] + z_center
        xyz_func = np.concatenate((xy_probe, z_func[:, None]),
                                  axis=1).reshape(nu, nv, 3)
        xyz_approx = surface.eval_xy_array(xy_probe).reshape(nu, nv, 3)
        print("Approx error: ", approx.error)
        grid_cmp(xyz_func, xyz_approx, 0.02)
Пример #4
0
    def plot_extrude(self):
        #fig1 = plt.figure()

        #ax1 = fig1.gca(projection='3d')



        def function(x):
            return math.sin(x[0]*4) * math.cos(x[1] * 4)

        def function2(x):
            return math.cos(x[0]*4) * math.sin(x[1] * 4)

        def function3(x):
            return (-x[0] + x[1] + 4 + 3 + math.cos(3 * x[0]))

        def function4(x):
            return (2 * x[0] - x[1] + 3 + math.cos(3 * x[0]))

        u1_int = 4
        v1_int = 4
        u2_int = 4
        v2_int = 4

        u_basis = bs.SplineBasis.make_equidistant(2, u1_int) #10
        v_basis = bs.SplineBasis.make_equidistant(2, v1_int) #15
        u2_basis = bs.SplineBasis.make_equidistant(2, u2_int) #10
        v2_basis = bs.SplineBasis.make_equidistant(2, v2_int) #15
        poles = bs.make_function_grid(function, u1_int + 2, v1_int + 2) #12, 17
        surface_extrude = bs.Surface((u_basis, v_basis), poles)

        myplot = bp.Plotting((bp.PlottingPlotly()))
        #myplot.plot_surface_3d(surface_extrude, poles = False)
        poles2 = bs.make_function_grid(function2,  u2_int + 2, v2_int + 2) #12, 17
        surface_extrude2 = bs.Surface((u2_basis, v2_basis), poles2)
        #myplot.plot_surface_3d(surface_extrude2, poles=False)

        m = 100
        fc = np.zeros([m * m, 3])
        fc2 = np.empty([m * m, 3])
        a = 5
        b = 7
        #print(fc)

        for i in range(m):
            for j in range(m):
                #print([i,j])
                x = i / m * a
                y = j / m * b
                z = function3([x, y])
                z2 = function4([x, y])
                fc[i + j * m, :] = [x, y, z]
                fc2[i + j * m, :] = [x, y, z2]

        #print(fc)

        #gs = bs.GridSurface(fc.reshape(-1, 3))
        #gs.transform(xy_mat, z_mat)
        #approx = bsa.SurfaceApprox.approx_from_grid_surface(gs)




        approx = bsa.SurfaceApprox(fc)
        approx2 = bsa.SurfaceApprox(fc2)
        surfz = approx.compute_approximation(nuv=np.array([11, 26]))
        surfz2 = approx2.compute_approximation(nuv=np.array([20, 16]))
        #surfz = approx.compute_approximation(nuv=np.array([3, 5]))
        #surfz2 = approx2.compute_approximation(nuv=np.array([2, 4]))
        surfzf = surfz.make_full_surface()
        surfzf2 = surfz2.make_full_surface()


        myplot.plot_surface_3d(surfzf, poles=False)
        myplot.plot_surface_3d(surfzf2, poles=False)

        #return surface_extrude, surface_extrude2, myplot
        return surfzf, surfzf2, myplot