Пример #1
0
    if truncate:
        Y_samples = Y_samples[good_inds, :]
    # outfile = 'bh_da_init_' + infile + '_out.txt'
    # betafile = 'bh_da_init_' + infile + '_betas.txt'

print(pc_data.shape)

# DROPOUT
## sums = np.sum(pc_data**2, axis=1)
## print(min(sums))

## pc_data = pc_data[sums > .1, :]

## print(pc_data.shape)

embedded, betas, orig_densities, emb_densities = run_bh_tsne(
    pc_data,
    initial_dims=pc_data.shape[1],
    theta=0.3,
    verbose=True,
    perplexity=50,
    max_iter=max_iter,
    use_pca=False,
    Y_samples=Y_samples,
    weight=1.)

np.savetxt(file_root.format(outdir, infile, 'out'), embedded)
np.savetxt(file_root.format(outdir, infile, 'betas'), betas)
np.savetxt(file_root.format(outdir, infile, 'marg_origD'), orig_densities)
np.savetxt(file_root.format(outdir, infile, 'marg_embD'), emb_densities)
Пример #2
0
## sums = np.sum(pc_data**2, axis=1)
## print(min(sums))

## pc_data = pc_data[sums > .1, :]

## print(pc_data.shape)

Y_file = 'bh_' + infile + '_out.txt'
Y_samples = np.loadtxt(Y_file)

# DEBUG PRESENCE OF INITIAL SAMPLES
# weights = [1.0, 2.0, 3.0]
for i, w in enumerate(weights):
    embedded, betas, orig_densities, emb_densities = bh_da_sne_init.run_bh_tsne(
        pc_data,
        initial_dims=pc_data.shape[1],
        theta=0.3,
        thresh=1000.0,
        verbose=True,
        perplexity=30,
        max_iter=max_iter,
        use_pca=False,
        Y_samples=Y_samples,
        weight=w)

    print embedded.shape, betas.shape
    np.savetxt(file_root.format(infile, 'out', i), embedded)
    np.savetxt(file_root.format(infile, 'betas', i), betas)
    np.savetxt(file_root.format(infile, 'marg_origD', i), orig_densities)
    np.savetxt(file_root.format(infile, 'marg_embD', i), emb_densities)
Пример #3
0
if (initY is not None):
    Y_samples = np.loadtxt(initY)
    max_iter = 500

print transformed.shape
if (initY is not None):
    print Y_samples.shape

N, D = transformed.shape

if sub:
    sub_sz = int(subsample * N)
    indices = np.random.choice(N, sub_sz, replace=False)
    transformed = transformed[indices, :]

np.savetxt(pcafile + '.txt', transformed)

embedded, betas = bh_da_sne_init.run_bh_tsne(transformed,
                                             initial_dims=transformed.shape[1],
                                             theta=0.3,
                                             thresh=1.0,
                                             verbose=True,
                                             perplexity=30,
                                             max_iter=max_iter,
                                             use_pca=False,
                                             Y_samples=Y_samples)

print embedded.shape, betas.shape
np.savetxt(outfile, embedded)
np.savetxt(betafile, betas)