Пример #1
0
def outFrac_3sigma68_1pz(z1, z2):
    delta_z_1pz = bhz.delta_z_1pz(z1, z2)
    return bhz.outFrac_3sigma68(delta_z_1pz)
Пример #2
0
def median_1pz(z1, z2):
    delta_z_1pz = bhz.delta_z_1pz(z1, z2)
    return np.median(delta_z_1pz)
Пример #3
0
def sigma_68_1pz(z1, z2):
    delta_z_1pz = bhz.delta_z_1pz(z1, z2)
    return bhz.sigma_68(delta_z_1pz)
Пример #4
0
            res[ptype][f][test_name] = {}

            #should we calculate an error on these metrics
            error_function = pval.key_not_none(tst, 'error_function')

            err_metric = {}
            if error_function:
                for ef in tst['error_function']:
                    #turn error function.string into a function
                    err_metric[ef.split('.')[-1]] = pval.get_function(ef)

            for photoz in tst['predictions']:
                res[ptype][f][test_name][photoz] = {}
                diff = pval.delta_z(d[tst['truths']], d[photoz])
                diff_1pz = pval.delta_z_1pz(d[tst['truths']], d[photoz])

                points = {'delta_z': diff, 'diff_1pz': diff_1pz}

                for metric in tst['metrics']:

                    #set all objects equal weight, unless defined
                    weights = get_weights(tst, 'weights', d)

                    res[ptype][f][test_name][photoz][metric] = {}

                    #turn string into function
                    metric_function = pval.get_function(metric)

                    #which residuals shall we employ?
                    for diffpp in points.keys():