def test_benchmark_time_series():
    dataset = bdp.DataSet()
    trial = bdp.Run('700', dataset)

    timeSeries = cbi.benchmark_time_series(trial)

    testing.assert_allclose(trial.taskSignals['RollAngle'], timeSeries['p'])
    testing.assert_allclose(trial.taskSignals['RollRate'], timeSeries['pD'])
    testing.assert_allclose(trial.taskSignals['RollRate'].time_derivative(),
                            timeSeries['pDD'])
    testing.assert_allclose(trial.taskSignals['SteerAngle'], timeSeries['d'])
    testing.assert_allclose(trial.taskSignals['SteerRate'], timeSeries['dD'])
    testing.assert_allclose(trial.taskSignals['SteerRate'].time_derivative(),
                            timeSeries['dDD'])
    testing.assert_allclose(trial.taskSignals['ForwardSpeed'], timeSeries['v'])
    testing.assert_allclose(trial.bicycleRiderParameters['g'], timeSeries['g'])
    testing.assert_allclose(trial.taskSignals['PullForce'], timeSeries['F'])
Пример #2
0
def select_runs(riders, maneuvers, environments):
    """Returns a list of runs given a set of conditions.

    Parameters
    ----------
    riders : list
        All or a subset of ['Charlie', 'Jason', 'Luke'].
    maneuvers : list
        All or a subset of ['Balance', 'Balance With Disturbance', 'Track
        Straight Line', 'Track Straight Line With Disturbance'].
    environments : list
        All or a subset of ['Horse Treadmill', 'Pavillion Floor'].

    Returns
    -------
    runs : list
        List of run numbers for the given conditions.

    """

    dataset = bdp.DataSet()
    dataset.open()

    table = dataset.database.root.runTable

    runs = []
    for row in table.iterrows():
        con = []
        con.append(row['Rider'] in riders)
        con.append(row['Maneuver'] in maneuvers)
        con.append(row['Environment'] in environments)
        con.append(row['corrupt'] is not True)
        con.append(int(row['RunID']) > 100)
        if False not in con:
            runs.append(row['RunID'])

    dataset.close()

    return runs
Пример #3
0
def load_trials(runs, H):
    """Returns a dictionary of Run objects which were successfully computed and
    list of runs which had errors.

    Parameters
    ----------
    runs : list
        A list of run numbers to try to load.
    H : dictionary
        The H vector for the lateral force contributions to steer torque and
        roll torque for each rider.

    Returns
    -------
    trials : dictionary
        A dictionary of bicycledataprocess.Run objects. All in `runNums` must
        be present. These trials have an additional attribute `H` which holds
        the value for the bicycle model.
    errors : list
        A list of run numbers that had errors (primarily in the bump finding.


    """
    trials = {}
    errors = []
    dataset = bdp.DataSet()
    for i, r in enumerate(runs):
        try:
            trial = bdp.Run(r, dataset, filterFreq=15.)
        except bdp.bdpexceptions.TimeShiftError:
            errors.append(r)
        except IndexError:
            errors.append(r)
        else:
            trial.H = H[trial.metadata['Rider']]
            trials[r] = trial

    return trials, errors
import sys
sys.path.append('..')
from load_paths import read
import cPickle
import numpy as np
import matplotlib.pyplot as plt
import bicycledataprocessor as bdp
from canonicalbicycleid import canonical_bicycle_id as cbi

with open(read('pathToGoodRuns')) as f:
    goodRuns = cPickle.load(f)

with open(read('pathToIdMat')) as f:
    idMat = cPickle.load(f)

dataset = bdp.DataSet()

roll = {k: [] for k in idMat.keys() + ['Whipple', 'Arm']}
steer = {k: [] for k in idMat.keys() + ['Whipple', 'Arm']}

allH = cbi.lateral_force_contribution(['Charlie', 'Jason', 'Luke'])

for runNum in goodRuns:
    trial = bdp.Run(runNum, dataset, filterFreq=15.)
    rider = trial.metadata['Rider']
    timeseries = cbi.benchmark_time_series(trial, subtractMean=True)
    for k, model in idMat.items():
        rollrsq, steerrsq, fig = cbi.input_prediction(timeseries, model)
        roll[k].append(rollrsq)
        steer[k].append(steerrsq)
        fig.savefig('plots/' + str(runNum) + '-' + k + '.png')
Пример #5
0
    path_to_config = os.path.join(os.getcwd(), 'bicycle-data.cfg')
    config = SafeConfigParser()
    config.read(path_to_config)
    PATH_TO_BICYCLE_PARAMETER_DATA = \
        config.get('data', 'PATH_TO_BICYCLE_PARAMETER_DATA')
    PATH_TO_INSTRUMENTED_BICYCLE_DATA = \
        config.get('data', 'PATH_TO_INSTRUMENTED_BICYCLE_DATA')

    # select some runs
    riders = ['Charlie', 'Jason', 'Luke']
    maneuvers = [
        'Balance', 'Balance With Disturbance', 'Track Straight Line',
        'Track Straight Line With Disturbance'
    ]
    environments = ['Horse Treadmill', 'Pavillion Floor']
    data_set = bdp.DataSet(pathToDatabase=PATH_TO_INSTRUMENTED_BICYCLE_DATA)
    runs = data_set.select_runs(riders, maneuvers, environments)

    # initialize the data structures
    time_series = {}
    stats = {
        'Root Mean Square of the Error': [],
        'Coefficient of Determination': [],
        'Maximum Error': []
    }
    max_num_samples = 0

    for run in runs:

        ts = {}
        ts['Steer Tube Torque'] = None
def test_benchmark_lstsq_matrices():
    dataset = bdp.DataSet()
    trial = bdp.Run('700', dataset)

    A, B, F = cbi.whipple_state_space(trial.metadata['Rider'], 1.0)
    H = np.dot(np.linalg.inv(B[2:]), F[2:])

    timeSeries = cbi.benchmark_time_series(trial, subtractMean=False)
    M, C1, K0, K2 = trial.bicycle.canonical(nominal=True)
    fixedValues = cbi.benchmark_canon_to_dict(M, C1, K0, K2, H)

    rollParams = [
        'Mpp', 'Mpd', 'C1pp', 'C1pd', 'K0pp', 'K0pd', 'K2pp', 'K2pd', 'HpF'
    ]

    A, B = cbi.benchmark_lstsq_matrices(rollParams, timeSeries, fixedValues)

    testing.assert_allclose(trial.taskSignals['RollRate'].time_derivative(),
                            A[:, 0])
    testing.assert_allclose(trial.taskSignals['SteerRate'].time_derivative(),
                            A[:, 1])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed'] * trial.taskSignals['RollRate'],
        A[:, 2])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed'] * trial.taskSignals['SteerRate'],
        A[:, 3])
    testing.assert_allclose(9.81 * trial.taskSignals['RollAngle'], A[:, 4])
    testing.assert_allclose(9.81 * trial.taskSignals['SteerAngle'], A[:, 5])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed']**2 * trial.taskSignals['RollAngle'],
        A[:, 6])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed']**2 * trial.taskSignals['SteerAngle'],
        A[:, 7])
    testing.assert_allclose(-trial.taskSignals['PullForce'], A[:, 8])
    testing.assert_allclose(np.zeros_like(trial.taskSignals['PullForce']), B)

    rollParams = ['Mpp', 'Mpd', 'C1pp', 'C1pd', 'K0pp', 'K0pd', 'K2pp', 'K2pd']

    A, B = cbi.benchmark_lstsq_matrices(rollParams, timeSeries, fixedValues)

    testing.assert_allclose(trial.taskSignals['RollRate'].time_derivative(),
                            A[:, 0])
    testing.assert_allclose(trial.taskSignals['SteerRate'].time_derivative(),
                            A[:, 1])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed'] * trial.taskSignals['RollRate'],
        A[:, 2])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed'] * trial.taskSignals['SteerRate'],
        A[:, 3])
    testing.assert_allclose(9.81 * trial.taskSignals['RollAngle'], A[:, 4])
    testing.assert_allclose(9.81 * trial.taskSignals['SteerAngle'], A[:, 5])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed']**2 * trial.taskSignals['RollAngle'],
        A[:, 6])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed']**2 * trial.taskSignals['SteerAngle'],
        A[:, 7])
    testing.assert_allclose(H[0] * trial.taskSignals['PullForce'], B)

    steerParams = [
        'Mdp', 'Mdd', 'C1dp', 'C1dd', 'K0dp', 'K0dd', 'K2dp', 'K2dd', 'HdF'
    ]

    A, B = cbi.benchmark_lstsq_matrices(steerParams, timeSeries, fixedValues)

    testing.assert_allclose(trial.taskSignals['RollRate'].time_derivative(),
                            A[:, 0])
    testing.assert_allclose(trial.taskSignals['SteerRate'].time_derivative(),
                            A[:, 1])

    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed'] * trial.taskSignals['RollRate'],
        A[:, 2])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed'] * trial.taskSignals['SteerRate'],
        A[:, 3])

    testing.assert_allclose(9.81 * trial.taskSignals['RollAngle'], A[:, 4])
    testing.assert_allclose(9.81 * trial.taskSignals['SteerAngle'], A[:, 5])

    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed']**2 * trial.taskSignals['RollAngle'],
        A[:, 6])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed']**2 * trial.taskSignals['SteerAngle'],
        A[:, 7])

    testing.assert_allclose(-trial.taskSignals['PullForce'], A[:, 8])
    testing.assert_allclose(trial.taskSignals['SteerTorque'], B)

    steerParams = [
        'Mdp', 'Mdd', 'C1dp', 'C1dd', 'K0dp', 'K0dd', 'K2dp', 'K2dd'
    ]

    A, B = cbi.benchmark_lstsq_matrices(steerParams, timeSeries, fixedValues)

    testing.assert_allclose(trial.taskSignals['RollRate'].time_derivative(),
                            A[:, 0])
    testing.assert_allclose(trial.taskSignals['SteerRate'].time_derivative(),
                            A[:, 1])

    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed'] * trial.taskSignals['RollRate'],
        A[:, 2])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed'] * trial.taskSignals['SteerRate'],
        A[:, 3])

    testing.assert_allclose(9.81 * trial.taskSignals['RollAngle'], A[:, 4])
    testing.assert_allclose(9.81 * trial.taskSignals['SteerAngle'], A[:, 5])

    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed']**2 * trial.taskSignals['RollAngle'],
        A[:, 6])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed']**2 * trial.taskSignals['SteerAngle'],
        A[:, 7])

    testing.assert_allclose(
        trial.taskSignals['SteerTorque'] +
        H[1] * trial.taskSignals['PullForce'], B)

    steerParams = ['Mdp', 'C1dd', 'K0dp', 'K2dp', 'K2dd']

    A, B = cbi.benchmark_lstsq_matrices(steerParams, timeSeries, fixedValues)

    testing.assert_allclose(trial.taskSignals['RollRate'].time_derivative(),
                            A[:, 0])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed'] * trial.taskSignals['SteerRate'],
        A[:, 1])
    testing.assert_allclose(9.81 * trial.taskSignals['RollAngle'], A[:, 2])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed']**2 * trial.taskSignals['RollAngle'],
        A[:, 3])
    testing.assert_allclose(
        trial.taskSignals['ForwardSpeed']**2 * trial.taskSignals['SteerAngle'],
        A[:, 4])

    testing.assert_allclose(
        H[1] * trial.taskSignals['PullForce'] +
        trial.taskSignals['SteerTorque'] -
        fixedValues['Mdd'] * trial.taskSignals['SteerRate'].time_derivative() -
        fixedValues['C1dp'] * trial.taskSignals['ForwardSpeed'] *
        trial.taskSignals['RollRate'] -
        fixedValues['K0dd'] * 9.81 * trial.taskSignals['SteerAngle'], B)
#!/usr/bin/env python

import bicycledataprocessor as bdp
import os
import numpy as np
import matplotlib.pyplot as plt

pathToBicycleMechanics = '/media/Data/Documents/School/UC Davis/Bicycle Mechanics'
pathToDatabase = os.path.join(
    pathToBicycleMechanics, 'BicycleDataProcessor/InstrumentedBicycleData.h5')
pathToParameterData = os.path.join(pathToBicycleMechanics,
                                   'BicycleParameters/data')

dataset = bdp.DataSet(fileName=pathToDatabase)
dataset.open()

trial = bdp.Run('00699',
                dataset,
                pathToParameterData=pathToParameterData,
                filterFreq=40.)

dataset.close()

golden_mean = (np.sqrt(5) - 1.0) / 2.0
fig_width = 6.0
fig_height = fig_width * golden_mean
params = {
    'backend': 'ps',
    'axes.labelsize': 8,
    'axes.titlesize': 10,
    'text.fontsize': 8,
Пример #8
0
try:
    filename = '../data/steer-torque-data.h5'
    with open(filename, 'r') as f:
        time_series = pandas.read_hdf(filename, 'time_series')
        stats = pandas.read_hdf(filename, 'stats')
except IOError:

    # select some runs
    riders = ['Charlie', 'Jason', 'Luke']
    maneuvers = [
        'Balance', 'Balance With Disturbance', 'Track Straight Line',
        'Track Straight Line With Disturbance'
    ]
    environments = ['Horse Treadmill', 'Pavillion Floor']
    data_set = bdp.DataSet()
    runs = data_set.select_runs(riders, maneuvers, environments)

    # initialize the data structures
    time_series = {}
    stats = {
        'Root Mean Square of the Error': [],
        'Coefficient of Determination': [],
        'Maximum Error': []
    }
    max_num_samples = 0

    for run in runs:

        ts = {}
        ts['Steer Tube Torque'] = None